

DEPARTMENT OF PHYSICS MAR THOMA COLLEGE FOR WOMEN, PERUMBAVOOR

UJT CHARACTERISTICS

Aim To plot the VI characteristics of a unijunction transistor and to measure its intrinsic stand off ratio.

Components and equipments required UJT, voltmeters, ammeters, rheostats, dc sources, bread board and CRO.

Theory A unijunction transistor consists of a bar of highly doped N-type semiconductor to which a heavily doped P-type rod is attached. Ohmic contacts are made at opposite ends of the N-type bar, which are called base₁(B₁) and base₂(B₂) of the transistor. P-type rod is called the emitter.

Refer the equivalent circuit of the UJT given in figure. The inter base resistance R_{BB} of the N-type silicon bar appears as two resistors R_{B1} and R_{B2} , where R_{BB} equals the sum of R_{B1} and R_{B2} . The intrinsic stand off ratio η is given by the expression

$$\eta = \frac{R_{B1}}{R_{BB}} \text{ with } I_{E} = 0$$

Due to the applied voltage at the B_2 of the transistor, a positive voltage gets developed across R_{a_1} and is equal to ηV_{BB} .

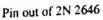
When V_E is less than the voltage across R_{B1} , diode becomes reverse biased. When V_E increases, a forward current flows through the emitter to B_1 region.

If V_E is raised further, a sudden reduction of R_{B1} occurs. This happens because the increase in current reduces R_{B1} . Reduction in R_{B1} causes the increase in current through it. This further reduces R_{B1} and so forth. In other words, a regenerative action takes place at a particular value of V_E , called peak voltage which is expressed as $V_p = \eta V_{BB} + V_D$, where V_{BB} is the base supply voltage and V_D is the junction voltage drop. After a particular value of V_E , called of V_E , called peak with V_E , similar to that of an ordinary forward biased diode.

As explained above, when V_E is rises, forward resistance across the junction decreases and the junction behaves as a short circuit. Then current through the E-B₁ junction increases and hence voltage across the junction decreases. This is equivalent to a negative resistance

DEPARTMENT OF PHYSICS MAR THOMA COLLEGE FOR WOMEN, PERUMBAVOOR

across the junction. This continues up to a voltage called valley voltage V_y after which junction behaves as an ordinary diode.

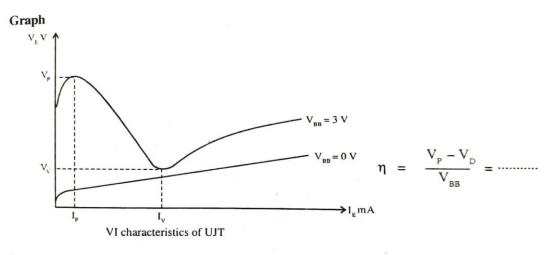

Procedure

- 1. Identify the leads of UJT correctly and set up the circuit as shown in figure.
- 2. Keeping $V_{BB} = 0$, Vary V_E from 0 V to 10 V in steps of 0.5 V. Take the voltmeter and ammeter readings at the input side and enter it in tabular column. Repeat it for other values of V_{BB} (say 3 V & 6 V).
- 3. Plot the VI characteristics with I_e along x-axis and V_e along y-axis.

4. Calculate the intrinsic stand off ratio from the graph using its expression.

Note: Since peak current I_p is in μA , initial rise of voltage in the graph may not be obtained. **Circuit diagram**

$0 - 30 \underbrace{V}_{\text{H}} + \underbrace{B_{2}}_{\text{H}} + \underbrace{B_{2}}_{2N 2646} + \underbrace{B_{2}}_{2N 2646} + \underbrace{B_{2}}_{V_{\text{H}}} + \underbrace{B_{2}}_{V_{\text{H}}} + \underbrace{B_{2}}_{N 2646} + \underbrace{B_{2}}_{V_{\text{H}}} + \underbrace{B_{2}}_{N 2646} + \underbrace{B_{2}}_{V_{\text{H}}} + \underbrace{B_{2}}_{N 2646} + \underbrace{B_{2}}_{N 264$


Details of 2N 2646 η min = 0.56, η max = 0.75 I_p max = 5 μ A and I_v min = 4 mA

Tabular column

$V_{BB} = 0 V$		$V_{BB} = 3 V$		$V_{BB} = 6 V$	
I _E mA	V _E V	I _E mA	$V_E V$	I _E mA	
	0 V I _E mA				

DEPARTMENT OF PHYSICS MAR THOMA COLLEGE FOR WOMEN, PERUMBAVOOR

Result Intrinsic stand off ratio η =

Reference

Electronics Lab Manual Volume I, K.A. Navas, Rajath Publishers