M.Sc. MATHEMATICS

PROGRAMME OUTCOMES

PO1	Apply domain based knowledge to real life situations.
PO2	Acquire strong communication skills to function effectively in a diverse social atmosphere.
PO3	Adopt environmental values to enable sustainable living in the world.

POST GRADUATE PROGRAMME SPECIFIC OUTCOMES

	After the completion of the programme, the students will be able to:	
PSO1	Evaluate hypothesis, theories, methods and evidence within their proper contexts.	
PSO2	Use the concepts and theories of mathematics and their application in the real world to an	
	advanced level in a systematic manner.	
PSO3	Prepare for research studies in Mathematics & related fields and enhance career prospects	
	in a huge array of fields.	

M.Sc. Course Outcomes

		Course Outcomes
Sl. No	Name of the Paper	
		After the completion of the course, the students will be able:
	SEMESTER I ME010101: Abstract Algebra	CO1 : To analyze fundamental homomorphism theorem
		and group action on a set.
1		CO2 : To apply isomorphism theorems and Sylow
		theorems.
		CO3 : To demonstrate the knowledge of factorization of
		polynomials over a field, ring homomorphism, quotient
		rings, prime and maximal ideals.
	SEMESTER I ME010102: Linear Algebra	CO1 : To illustrate basic concepts of vector spaces and the
		properties of determinant function.
		CO2 : To differentiate different linear transformations,
2		their algebra and representation of transformations by
_		matrices.
		CO3 : To implement the ideas of canonical forms,
		characteristic values and annihilating polynomials.
3	SEMESTER I ME010103: Basic Topology	CO1 : To analyse the concept of topological spaces, base
		and subbase.
		CO2 : To apply the concept of continuity, quotient spaces
		and connectedness on different topologies.
		CO3 : To differentiate levels of spaces based on axioms.

4	SEMESTER I ME010104: Real Analysis SEMESTER I	 variation and rectifiable curves. CO2 : To acquire the idea about Riemann-Stieltjes integral and the concept of uniform convergence. CO3 : To acquire the idea about special functions. CO1 : To discuss about basic concepts of graph theory
4	SEMESTER I ME010104: Real Analysis SEMESTER I	 CO2 : To acquire the idea about Riemann-Stieltjes integral and the concept of uniform convergence. CO3 : To acquire the idea about special functions. CO1 : To discuss about basic concepts of graph theory
5	ME010104: Real Analysis	and the concept of uniform convergence. CO3 : To acquire the idea about special functions. CO1 : To discuss about basic concepts of graph theory
5	SEMESTER I	CO3 : To acquire the idea about special functions. CO1 : To discuss about basic concepts of graph theory
5	SEMESTER I	CO1 : To discuss about basic concepts of graph theory
5	SEMESTER I	cor. To discuss about basic concepts of graph theory
5	SEMESTER I	CO2 · To use the application of trees in everyday
5	SEMESTER I ME010105: Graph Theory	problems
		CO3 • To practice problems on Eulerian and Hamiltonian
1		graphs graph coloring and planarity of graph
		CO1 : To explain the properties of finite fields
	SEMESTER II ME010201: Advanced Abstract	CO2 : To apply the concents of UED ED and field
6		cos . To apply the concepts of OFD, ED and field
	Algebra	CO3 . To describe Galais group and Galais theory
		CO1 . To explain Upwach characterization of normality.
		Tistza sharacterization of normality, products and
		netze characterization of normanity, products and
	SEMESTER II ME010202: Advanced	CO2 . To analyze embedding lamma Tyshanaff
7		co2 : To analyse embedding lemma, Tychonon ambadding and matrization theorem
	Topology	embedding and metrization meorem. $CO2$. To develop the idea of convergence of note
		CO3 : To develop the Idea of convergence of nets,
		compactness and variations of compactness.
	SEMESTER II ME010203: Numerical analysis with Python 3	CO1 • To develop basic python programming involving
		symbolic mathematical operations
		CO2 : To interpret the concepts of Gaussian elimination
8		interpolation curve fitting and finding roots of equations
0		using nython programme
		CO3 : To illustrate the concept of numerical integration
		using python
		CO1 : To explain spherical representation of complex
	SEMESTER II ME010204: Complex Analysis	plane and elementary properties of analytic functions.
		CO2 : To analyse power series representation of analytic
9		functions.
		CO3 : To examine the concept of singularities and
		residues.
		residues. CO1 : To use knowledge about Lebesgue measure and
		residues. CO1 : To use knowledge about Lebesgue measure and Lebesgue measurable functions.
	SEMESTER II	residues. CO1 : To use knowledge about Lebesgue measure and Lebesgue measurable functions. CO2: To describe general measurable space and
10	SEMESTER II ME010205: Measure Theory	residues. CO1 : To use knowledge about Lebesgue measure and Lebesgue measurable functions. CO2: To describe general measurable space and measurable functions.
10	SEMESTER II ME010205: Measure Theory and Integration	residues. CO1 : To use knowledge about Lebesgue measure and Lebesgue measurable functions. CO2: To describe general measurable space and measurable functions. CO3: To apply integration over general measurable space
7 8 9	SEMESTER II ME010202: Advanced Topology SEMESTER II ME010203: Numerical analysis with Python 3 SEMESTER II ME010204: Complex Analysis	 CO2 : To analyse embedding lemma, Tychono embedding and metrization theorem. CO3 : To develop the idea of convergence of net compactness and variations of compactness. CO1 : To develop basic python programming involvin symbolic mathematical operations. CO2 : To interpret the concepts of Gaussian elimination interpolation, curve fitting and finding roots of equation using python programme. CO3 : To illustrate the concept of numerical integration using python. CO1 : To explain spherical representation of complete plane and elementary properties of analytic functions. CO2 : To analyse power series representation of analytic functions. CO3 : To examine the concept of singularities ar

		CO1 : To apply the concept of harmonic and subharmonic
	SEMESTER III	functions.
		CO2 : To explain Weierstrass's theorem, Gamma
11	ME010301: Advanced	function, Hadamard's theorem, Riemann zeta function and
	Complex Analysis	normal families.
		Voieratrage's theory
		CO1 . To apply various analytic methods for computing
	SEMESTER III ME010302: Partial Differential Equations	solutions of various PDEs and studying their behavior
		CO2 · To determine integral surfaces passing through a
12		curve characteristic curves of second order PDE and
12		compatible systems.
		CO3 : To analyse behavior of solutions of PDEs using
		technique of separation of variables.
		CO1 : To acquire the concepts of integral transforms
	SEMESTER III	convolutions and multivariable differential calculus
13	ME010303: Multivariate	CO2 : To discuss implicit functions and extremum
	Transforms	problems.
		CO3 : To explain integration of differential forms.
		CO1 : To acquire the concepts of normed spaces,
		properties of normed space, linear operators on finite
14	SEMESTER III	dimensional spaces and dual space.
14	ME010304: Functional	coz: To infustrate limer product spaces and properties of orthonormal sequences using examples and theorems
	Anarysis	CO3 • To demonstrate different forms of Hahn-Banach
		Theorems
		CO1 : To determine solutions to linear programming
	SEMESTER III ME010305: Optimization Techniques	problems and integer programming problems using
		different methods.
15		CO2: To analyse the concepts of flow and potential in
		networks and goal programming.
		CO3 : To discuss different methods for solving non-linear
		programming problems.
	SEMESTER IV ME010401: Spectral Theory	CO1 : To distinguish different forms of convergence of
		operators and open mapping theorem.
16		CO2 : To apply the concept of Banach fixed point
16		theorem and properties of resolvent and spectrum.
		bounded self adjoint linear operators, positive operators
		and properties of projections
	SEMESTER IV ME010402: Analytic Number Theory	CO1 : To apply the properties of arithmetical functions
		for solving problems.
		CO2 : To acquire the knowledge about the theory of
17		prime numbers.
		CO3 : To utilize the concepts of congruences, Chinese
		remainder theorem, Euler's theorem, Wilson's theorem
		and Legendre's symbol.

18	SEMESTER IV ME800401 (Elective): Differential Geometry	 CO1 : To interpret the ideas of graphs and level sets, vector fields, the tangent space and vector fields on surfaces and orientation. CO2 : To summarize the fundamentals of Gauss map, geodesics and parallel transport.
		CO3 : To describe the ideas of Weingarten map, curvature of plane curves and line integrals, curvature of surfaces and parametrized surfaces.
19	SEMESTER IV ME800402 (Elective): Algorithmic Graph Theory	 CO1 : To implement basic concepts of graphs using algorithms. CO2 : To establish the max-flow min-cut algorithm and Menger's theorem for finding connectivity. CO3 : To examine algorithms for finding maximum matching in bipartite graphs, factorizations and block designs.
20	SEMESTER IV ME800403 (Elective): Combinatorics	CO1: To apply the concepts of permutation, combinations problems,pigeonhole principle and Ramsey numbers.CO2: To use principles of inclusion and exclusion for solving problems.CO3: To compute generating functions and recurrence relations.
21	SEMESTER IV ME010403 & ME010104: Dissertation and Viva-voce	 CO1 : To deduce their arguments in a comprehensible and scholarly manner. CO2 : To develop the spirit of research in their mind. CO3 : To validate scientific integrity.