B.Sc. MATHEMATICS MODEL I

PROGRAMME OUTCOMES

PO1	Apply domain based knowledge to real life situations.
PO2	Acquire strong communication skills to function effectively in a diverse social atmosphere.
PO3	Adopt environmental values to enable sustainable living in the world.

UNDER GRADUATE PROGRAMME SPECIFIC OUTCOMES

	After the completion of the programme, the students will be able to:
PSO1	Utilize the mathematical tools to face the modern challenges in Mathematics.
PSO2	Acquire analytic and problem solving skills for careers and graduate works.
PSO3	Provide a holistic and logical framework in specific areas of Mathematics.

B.SC. COURSE OUTCOMES

Sl. No.	Name of the Paper	Course Outcomes
		After the completion of the course, the students will be
		able:
1	SEMESTER I Core Course: MM1CRT01 Foundations of Mathematics	CO1 : To explain the concepts of mathematical logic
		methods.
		CO2 : To illustrate the idea of sets, functions and
		relations
		CO3 : To solve polynomial equations using numerical
		methods.
2	SEMESTER II Core Course: MM2CRT02 Analytic Geometry , Trigonometry and Differential Calculus	CO1 : To interpret the ideas of conic sections, tangents
		and normal to a conic and their properties.
		CO2 : To apply the concepts of trigonometric functions,
		their properties and summation of trigonometric series.
		CO3 : To solve problems involving successive
		differentiation and indeterminate forms.
	SEMESTER III Core Course: MM3CRT03 Calculus	CO1 : To determine series expansions of given functions
		and, curvature and related parameters of given curve.
3		CO2 : To calculate the partial derivatives, maxima and
		minima of functions and Lagrange multipliers for
		extremum problems.
		CO3 : To solve the area and volume problems using
		multiple integrals.

4	SEMESTER IV Core Course: MM4CRT04 Vector Calculus, Theory of Numbers and Laplace transform	 CO1 : To examine the applications of vector valued functions and vector integration. CO2 : To apply the concept of congruence, Fermat's theorem, Wilson's theorem and Euler's phi function. CO3 : To determine the Laplace transform of a given function.
5	SEMESTER V Core Course: MM5CRT05 Mathematical Analysis	 CO1 : To use the ideas of finite and infinite sets and the properties of set of real numbers. CO2 : To detect the convergence and divergence of sequence and series. CO3 : To apply the concept of limit of functions.
6	SEMESTER V Core Course: MM5CRT06 Differential Equations	 CO1 : To explain the concepts of nature of solutions of differential equations, exact equations and homogeneous equations CO2 : To determine the solutions of second order linear differential equations and first order partial differential equations using different methods. CO3 : To compute the solutions of second order linear differential equations using the power series method.
7	SEMESTER V Core Course: MM5CRT07 Abstract Algebra	 CO1 : To demonstrate different group structures and the basic results related to them. CO2 : To analyse the concepts of homomorphism of groups and factor groups using theorems and examples. CO3 : To explain the concepts of ideals and factor rings from the concepts of normal subgroups and factor groups.
8	SEMESTER V Core Course: MM5CRT08 Human Right and Mathematics for Environmental Studies	 CO1 : To explain different kinds of environmental pollution and its causes. CO2 : To apply knowledge about Fibonacci numbers and Golden ratio. CO3: To describe various rules protecting human rights.
9	SEMESTER V Open Course: MM5OPT02 Applicable Mathematics	 CO1 : To apply shortcut methods for solving problems. and improve mathematical skills CO2 : To describe the definitions of trigonometric ratios. CO3 : To acquire the basic arithmetic skills involving percentage, average, time and distance and elementary algebra.
10	SEMESTER VI Core Course: MM6CRT09 Real Analysis	 CO1: To explain the meaning of continuity ,discontinuity and derivative of a function. CO2: To acquire the idea about Riemann integrability and Riemann integration. CO3 : To explain uniform convergence of a series.
11	SEMESTER VI Core Course: MM6CRT10 Graph Theory and Metric Spaces	 CO1 : To explain basic concepts of graphs, directed graphs ,weighted graphs, trees, spanning trees, cut vertices and connectivity. CO2 : To examine Eulerian and Hamiltonian graphs. CO3 : To explain the basic concepts of metric spaces-

		open sets, closed sets and Cantor set, convergence,
		completeness and continuous mapping in metric spaces.
12		CO1 : To explain the concepts of limit, continuity of
	SEMESTER VI	complex functions and analytic functions.
	Core Course: MM6CRT11	CO2 : To apply the concept of complex integration and
	Complex Analysis	the convergence of complex sequence and series.
		CO3 : To detect singular points and residues.
	SEMESTER VI Core Course: MM6CRT12	CO1 : To illustrate the properties of matrices in solving
		system of linear equations.
13		CO2 : To illustrate the concepts of vector spaces and
		basic results related to them.
	Linear Algebra	CO3 : To discuss linear transformation and related
		concepts using matrices.
		CO1 : To apply linear programming problem solving
	SEMESTER VI	methods and the concept of duality in real world
14	Choice Based Course: MM6CBT01	problems.
17	Operations Research	CO2 : To solve transportation and assignment problems.
	operations research	CO3 : To describe the concept of Game theory.
		CO1 : To demonstrate their own work.
1.5	SEMESTER VI	CO2 : To produce a mature oral presentation of a
15	MM6PRT01: Project	non-trivial mathematical topic.
	2	CO3 : To investigate their awareness in relation to the
		wider research field.
	SEMESTER I	CO1 : To discuss the concept of partial derivatives.
	Complementary Course:	CO2 : To practice questions to find the rank of a matrix
16	MM1CMT01	using elementary transformations and solve linear
10	Partial Differentiation, Matrices,	equations.
	Trigonometry and Numerical	CO3 : To compute summation of infinite series,
	Methods.	solutions of algebraic and transcendental equations.
	SEMESTER II Complementary Course: MM2CMT02 Integral Calculus and Differential	CO1 : To apply definite integrals to find volumes, length
		of plane curves and area of surfaces of revolution.
		CO2 : To use multiple integrals to find volume of a solid
17		and area of bounded regions.
		CO3 : To solve first order differential equations and
	Equations	partial differential equations.
		CO1 : To solve problems involving vector valued
	OFMPOTED III	functions, green's theorem, stokes theorem to integrate in
	SEMESTER III	vector fields.
10	Complementary Course: MM3CMT03	
18		CO2 : To illustrate the idea about conic sections, polar
	Vector Calculus, Analytic	coordinates and conics in polar coordinates.
	Geometry and Abstract Algebra	CO3: To use the concepts of groups, cyclic groups and
		homomorphism of groups.
19	SEMESTER IV	CO1 : To discuss periodic functions, trigonometric series
	Complementary Course:	Fourier series and power series method.
	MM4CMT04	CO2 : To explain Laplace transforms.
	Fourier Series, Laplace Transform	CO3 : To discuss the concepts of complex numbers and
	and Complex Analysis	analytic functions.

STATISTICS

1	SEMESTER I Complementary Course: Descriptive Statistics	 CO1: To understand the basic knowledge on data collection CO2: To discuss the different data summarizing tools. CO3: To discuss different types of index numbers and the property satisfied by the good index number.
2	SEMESTER II Complementary Course: Probability Theory	 CO1: To explain the concept of random variable and the probability distributions. CO2: To analyse the inter relation between two or more phenomena with the help of curve fitting, correlation –regression analysis. CO3: To develop critical thinking in theory of probability and its applications in real life problems.
3	SEMESTER III Complementary Course: Distribution Theory	 CO1: To make a bridge between the elementary statistical tool and probability theory. CO2: To understand the standard statistical distribution found in statistical practice and its properties. CO3: To develop the knowledge on exact sampling distribution which are essential for statistical inference.
4	SEMESTER IV Complementary Course: Statistical Inference	CO1: To understand the notation of point and interval estimation of the parametric models and their desirable properties. CO2: To understand the problems those are faced in testing a hypothesis with reference to the errors in decision making. CO3: To apply the different testing tools like Z-test, t- test, F-test, χ^2 distribution etc. to analyse the relevant real life problems.