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ABSTRACT
In this paper, we obtain the Italian domination number, perfect Italian domination number and
double Roman domination number of generalized Sierpi�nski graph SðG, 2Þ, where G is a cycle Cn,
n � 4, a complete bipartite graph K1, q or K2, q, q � 2 and a bistar Bm, n, m, n � 3:
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1. Introduction

Let G be a simple graph with vertex set V(G) and edge set
E(G). If there is no ambiguity in the choice of G, then we
write V(G) and E(G) as V and E, respectively. The number
of vertices and edges of the graph G are denoted by n(G)
and m(G), respectively. The open neighbourhood of a vertex
v 2 V is the set NðvÞ ¼ fu : uv 2 Eg and the vertices in
N(v) are called the neighbours of v. jNðvÞj is called the
degree of the vertex v in G and is denoted by dGðvÞ, or sim-
ply d(v). The vertices with degree one are called leaves,
whereas the vertices with degree n� 1 are called universal
vertices. Let Cn denote a cycle on n vertices and Kp, q denote
a complete bipartite graph on pþ q vertices, where one par-
tition contains p vertices and other partition contains q ver-
tices. The bistar Bm, n is the graph obtained by joining the
center vertices of K1,m and K1, n by an edge.

Let f be a function defined on the vertex set of a graph
G. The weight of f is defined as f ðVÞ ¼ P

v2V f ðvÞ: A
Roman dominating function on G is a function f : VðGÞ !
f0, 1, 2g such that every vertex u 2 V with f ðuÞ ¼ 0 has at
least a neighbor v 2 NGðuÞ satisfying f ðvÞ ¼ 2: The Roman
domination number of G, denoted by cRðGÞ, is the min-
imum weight among all Roman dominating functions on G.
Cockayne, Dreyer, S. M. Hedetniemi and S. T. Hedetniemi
[14] introduced the concept of Roman Domination in
graphs, and since then a lot of related variations and gener-
alizations have been studied (see [7, 11–13]).

An Italian dominating function – IDF (perfect Italian
dominating function – PID-function) of a graph G is a func-
tion f : VðGÞ ! f0, 1, 2g satisfying the condition that for
every v 2 V with f ðvÞ ¼ 0, we have

P
u2NðvÞ f ðuÞ � 2

(
P

u2NðvÞ f ðuÞ ¼ 2), i.e., either v is adjacent to at least one

vertex u with f ðuÞ ¼ 2 or at least two vertices x and y with
f ðxÞ ¼ f ðyÞ ¼ 1 (i.e., all the neighbours of v are assigned the
weight 0 by f except for exactly one vertex u for which
f ðuÞ ¼ 2 or for exactly two vertices u and w for which
f ðuÞ ¼ f ðwÞ ¼ 1). The Italian domination number, cIðGÞ
(perfect Italian domination number, cpI ðGÞ) is the minimum
weight of an Italian dominating function [24] (perfect
Italian dominating function [23]). The Italian dominating
function with weight cIðGÞ is called a cI-function [10]. The
sum of the weights of the vertices of H is denoted by f(H),
where H is any subgraph of G. i.e., f ðHÞ ¼ P

u2VðHÞ f ðuÞ:
The study of Italian domination was initiated by Chellai
et al. in [10] and they called Italian domination as Roman
f2g-domination. Italian domination is fairly a new concept
and there are only a handful of papers on Italian domin-
ation. Interested readers may refer to [2, 17, 18, 20, 22, 24,
26, 28] and [35]. In [29], the exact value of perfect Italian
domination number for Cartesian product of some special
graphs is obtained. A relation between the Roman domin-
ation number and the perfect Italian domination number of
a graph G is obtained and the corresponding realization
problem is also solved. In [32], the authors characterize the
graphs G with cpI ðGÞ equal to 2 and 3 and determined the
exact value of the parameter for several simple-structured
graphs. It is also proved that it is NP-complete to decide
whether a given bipartite graph admits a perfect Italian
dominating function of weight k.

Given a graph G ¼ ðV, EÞ, a function f : V ! f0, 1, 2, 3g
having the property that if f(v) ¼ 0, then there exist v1, v2 2
NðvÞ such that f ðv1Þ ¼ f ðv2Þ ¼ 2 or there exists w 2 NðvÞ
such that f(w) ¼ 3, and if f(v) ¼ 1, then there exists w 2
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NðvÞ such that f ðwÞ � 2 is called a double Roman dominat-
ing function (DRDF). The double Roman domination num-
ber, cdRðGÞ, is the minimum among the weights of DRDFs
on G. If f : V ! f0, 1, 2, 3g is a function defined on V(G),

then fv 2 VðGÞ : f ðvÞ ¼ ig is denoted by Vf
i : (If there is no

ambiguity, Vf
i is written as Vi [9]. The study of double

Roman domination was initiated by R. A. Beeler, T. W.
Haynes and S. T. Hedetniemi in [9]. Interested readers may
refer [3–6, 21, 34, 36] and [38]. Domination parameters in
some classes of graphs have been studied by several authors
(see [15, 16]).

Let G ¼ ðV, EÞ be a non-empty graph of order n � 2,
and t a positive integer. Let Vt be the set of words of length
t on alphabet V. A word u of length t is denoted by
u1u2:::ut: The graph SðKn, tÞ, t � 1, was introduced by
Klav�zar and Milutinovi�c in [30] and was later called as
Sierpi�nski graphs in [31]. SðKn, tÞ has vertex set Vt and
fu, vg is an edge if and only if there exists i 2 f1, 2, :::, tg
such that: (i) uj ¼ vj, if j < i; (ii) ui 6¼ vi; (iii) uj ¼ vi and
vj ¼ ui, if j > i: The vertices of the form uuu:::u are called
extreme vertices of SðKn, tÞ:

The generalized Sierpi�nski graph of a graph G, denoted
by S(G, t), is a graph with vertex set Vt and edge set
ffwuiur�1

j ,wujur�1
i g : fui, ujg 2 E, i 6¼ j; r 2 f1, 2, :::, tg;w 2

Vt�rg [19]. Note that SðG, 1Þ is G itself. If V ¼ f1, 2, :::, ng
is the vertex set of G, then in SðG, 2Þ Vi ¼ fij : j ¼
1, 2, :::, ng induces a copy of G for each i 2 f1, 2, :::, ng:
The subgraph induced by Vi is denoted by Gi, for
i 2 f1, 2, :::, ng: Figure 1 gives SðC5, 1Þ and SðC5, 2Þ:

The value of various domination parameters of Sierpi�nski
graphs were studied in [6, 27, 33] and [37]. The reader may
refer to the survey paper [25]. For any graph theoretic ter-
minology and notations not mentioned here, the readers
may refer to [8].

The following results are useful in this paper.

Theorem 1.1. [10] For a cycle Cn and a path Pn, cIðCnÞ ¼
dn2e, cIðPnÞ ¼ dnþ1

2 e:
Theorem 1.2. [32] For a cycle Cn, c

p
I ðCnÞ ¼ dn2e:

Proposition 1.3. [9] In a double Roman dominating function
of weight cdRðGÞ, no vertex needs to be assigned the value 1.

Proposition 1.4. [1] For n � 3,

cdRðCnÞ ¼
n if n � 0, 2, 3, 4 ðmod 6Þ,
nþ 1 if n � 1, 5 ðmod 6Þ:

(

Proposition 1.5. [1] For n � 1,

cdRðPnÞ ¼
n if n � 0 ðmod 3Þ,
nþ 1 if n � 1 or 2 ðmod 3Þ:

(

In this paper, we obtain the exact values of the Italian
domination number, the perfect Italian domination number
and the double Roman domination number of the general-
ized Sierpi�nski graph SðG, 2Þ, where G is a cycle Cn, n � 4,

a complete bipartite graph K1, q or K2, q, q � 2 and a bis-
tar Bm, n, m, n � 3:

2. Main Results

For n¼ 3, Cn ffi K3 and cIðSðKn, 2ÞÞ, cpI ðSðKn, 2ÞÞ and
cdRðSðKn, 2ÞÞ were discussed in [27, 28] and [6], respectively.
Hence, in this section, we consider Cn, for n � 4 only.

Theorem 2.1. The Italian domination number of the general-
ized Sierpi�nski graph SðCn, 2Þ is cIðSðCn, 2ÞÞ ¼ ndn2e, for n � 4:

Proof. Let VðCnÞ ¼ fv1, v2, :::, vng: Then SðCn, 2Þ has the
vertex set fvivj : i, j 2 f1, 2, :::, ngg and edge set fðvivj, vivkÞ :
vjvk 2 EðCnÞg [ fðvivj, vjviÞ : vivj 2 EðCnÞg: In SðCn, 2Þ there
are n copies of Cn and we know that cIðCnÞ ¼ dn2e:
Therefore, if we take a cI-function in each copy of Cn, we
get an IDF of SðCn, 2Þ, so that cIðSðCn, 2ÞÞ � ndn2e:

For the reverse inequality, note that in Ci
n, vivi is the

extreme vertex and vivi�1 and viviþ1 are the vertices which
are adjacent to Ci�1

n and Ciþ1
n , respectively. The vertices

other than vivi�1, vivi, viviþ1 form a path on n� 3 vertices,
say Pi

n�3: Therefore, f ðPi
n�3 � fvivi�2, viviþ2gÞ � dn�5þ1

2 e ¼
dn�4

2 e: To Italian dominate vivi�2, vivi, viviþ2 (which do not
have any adjacency outside Ci

n) we need minimum weight 2.
Therefore, f ðCi

nÞ � dn�4
2 e þ 2 ¼ dn2e so that cIðSðCn, 2ÞÞ �

ndn2e: Hence, cIðSðCn, 2ÞÞ ¼ ndn2e: w

Corollary 2.2. The perfect Italian domination number of the
generalized Sierpi�nski graph SðCn, 2Þ is cpI ðSðCn, 2ÞÞ ¼ ndn2e,
for n � 4:

Proof. We know that cpI ðCnÞ ¼ dn2e: The proof is similar to
that of Theorem 2.1. w

Lemma 2.3. If Pn is a path on n vertices, where n is a mul-
tiple of 3, then the weight of a cdR-function assigned to the
end vertices is always zero.

Proof. Let Pn be the path v1v2:::vn: Let f be any cdR-function
with f ðv1Þ ¼ 1: Then v1 cannot double Roman dominate

Figure 1. Sierpi�nski graphs SðC5, tÞ, t ¼ 1, 2:
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any other vertex. Hence, f ðPn � v1Þ � n� 1þ 1 ¼ n, so
that f ðPnÞ � nþ 1 which is a contradiction.

Now let f be a cdR-function with f ðv1Þ ¼ 2: If f ðv2Þ � 1,
then none of the vertices of Pn � fv1, v2g are double Roman
dominated by vertices outside Pn � fv1, v2g: Consequently,
f ðPn � fv1, v2gÞ � n� 2þ 1 ¼ n� 1, so that f ðPnÞ �
n� 1þ 2 ¼ nþ 1, which is a contradiction. If f ðv2Þ > 1
then we can find a DRDF g as follows. gðv1Þ ¼ 0, gðv2Þ ¼ 3
and gðviÞ ¼ f ðviÞ for i ¼ 3, 4, :::, n: Clearly, g is a DRDF
with weight less than that of f, which is also a contradiction.
Hence, we conclude that f ðv1Þ 6¼ 2:

Similarly, the case when f ðv1Þ ¼ 3 also leads to a contra-
diction and so f ðv1Þ ¼ 0: In the same manner, we can also
prove that f ðvnÞ ¼ 0: w

Lemma 2.4. If Cn is a cycle, where n is an odd multiple of 3
then in any cdR-function, no vertex is assigned the weight 2.

Proof. Let Cn be a cycle v1v2:::vn and let f be a cdR-function
with at least one vertex assigned the weight 2. For definite-
ness, let f ðv1Þ ¼ 2: If f ðv2Þ is non-zero, then f ðv1Þ þ f ðv2Þ �
4 and f ðCn � fv1, v2, v3, vngÞ � n� 4þ 1 ¼ n� 3, so that
f ðCnÞ � n� 3þ 4 ¼ nþ 1 which is a contradiction. If
f ðv2Þ ¼ 0, then f ðv3Þ must be non-zero. If f ðv3Þ ¼ 3
then f ðv1Þ þ f ðv3Þ ¼ 5 and f ðCn � fv1, v2, v3, v4, vngÞ �
n� 5þ 1 ¼ n� 4 so that f ðCnÞ � n� 4þ 5 ¼ nþ 1 which
is also a contradiction. Hence, f ðv3Þ ¼ 2: Continuing this
argument, we get f ðviÞ ¼ 0 or 2 according as i is even or
odd, respectively, so that f ðCnÞ ¼ nþ 1 which is a contra-
diction. Hence, the result follows. w

Theorem 2.5. The double Roman domination number of the
generalized Sierpi�nski graph SðCn, 2Þ is

cdRðSðCn, 2ÞÞ ¼

n2 � n
2 if n ¼ 3k, k � 1 is even,

n2 � n
3 if n ¼ 3k, k � 1 is odd,

nðn� 1Þ if n ¼ 3kþ 1, k � 1,

n2 if n ¼ 3kþ 2, k � 1:

8>>>><
>>>>:

Proof. Let VðCnÞ ¼ fv1, v2, :::, vng: Then SðCn, 2Þ has the
vertex set fvivj : i, j 2 f1, 2, :::, ngg and edge set fðvivj, vivkÞ :
vjvk 2 EðCnÞg [ fðvivj, vjviÞ : vivj 2 EðCnÞg: We consider the
following cases.

Case 1: n ¼ 3k, k � 1 is even.

Define the following function on SðCn, 2Þ:

f ðvivjÞ ¼

3 if i ¼ 2, 4, :::, n; j ¼ iþ 3l ðmod nÞ; l ¼ 1, 2, :::, k� 1,

2 if i ¼ 1, 3, :::, n� 1; j ¼ iþ 1þ 2l ðmod nÞ,
l � 0 and i ¼ j ¼ 2, 4, :::, n,

0 otherwise:

8>>>><
>>>>:

Clearly, f is a DRDF and f ðVÞ ¼ 3 n
2 ðk� 1Þ þ 2 n

2
n
2 þ 2 n

2 ¼
n2 � n

2 : Hence, cdRðSðCn, 2ÞÞ � n2 � n
2 :

For the reverse inequality, note that in each Ci
n, vivi is

the extreme vertex and vivi�1 and viviþ1 are the only vertices
adjacent to other copies of Cn. The remaining vertices (other

than vivi�1, vivi, viviþ1) form a path on n� 3 vertices, say
Pi
n�3: Let f be any DRDF of SðCn, 2Þ: If f ðvivi�1Þ þ

f ðviviþ1Þ ¼ 0, then f ðviviÞ � 2 and f ðPi
n�3Þ � n� 3, so that

f ðCi
nÞ � n� 3þ 2 ¼ n� 1: If f ðvivi�1Þ þ f ðviviþ1Þ ¼ 2, then

one of f ðvivi�1Þ and f ðviviþ1Þ must be 2. For definiteness, let
f ðviviþ1Þ ¼ 2: Then f ðPi

n�3 � viviþ2Þ � n� 4þ 1 ¼ n� 3: In
this case, f ðviviÞ � 2 so that f ðCi

nÞ � n� 3þ 2þ 2 ¼ nþ 1:
If f ðvivi�1Þ þ f ðviviþ1Þ ¼ 3, then one of f ðvivi�1Þ and
f ðviviþ1Þ is 3. For definiteness, let f ðviviþ1Þ ¼ 3: Then
f ðPi

n�3 � viviþ2Þ � n� 4þ 1 ¼ n� 3 so that f ðCi
nÞ � n: If

f ðvivi�1Þ þ f ðviviþ1Þ � 4 then f ðPi
n�3 � vivi�2, viviþ2Þ �

n� 5þ 1 ¼ n� 4 so that f ðCi
nÞ � n: Thus, in all cases,

f ðCi
nÞ � n� 1 and if f ðCi

nÞ ¼ n� 1 then f ðPi
n�3Þ ¼

n� 3, f ðvivi�1Þ ¼ f ðviviþ1Þ ¼ 0 and f ðviviÞ ¼ 2: We claim
that if f ðCi0

n Þ ¼ n� 1 then f ðCi0þ1
n Þ � n: Since f ðPi0

n�3Þ ¼
n� 3, then f ðviovi0�2Þ ¼ f ðvi0vi0þ2Þ ¼ 0 by Lemma 2.3.
Therefore, since f ðviovi0�1Þ ¼ f ðvi0vi0þ1Þ ¼ 0, to double
Roman dominate vi0vi0þ1, f ðvi0þ1vi0Þ � 2 so that f ðCi0þ1

n Þ �
n: Thus if f ðCi0

n Þ ¼ n� 1 then f ðCi0þ1
n Þ � n so that

f ðSðCn, 2ÞÞ � n n
2 þ ðn� 1Þ n2 ¼ n2 � n

2 :

Case 2: n ¼ 3k, k � 1 is odd.

As in case 1, for any cdR-function f of SðCn, 2Þ f ðCi
nÞ � n� 1

for each i ¼ 1, 2, :::, n: We claim that if f ðCi0
n Þ ¼ n� 1, then

both f ðCi0�1
n Þ and f ðCi0þ1

n Þ is at least n. If f ðCi0
n Þ ¼ n� 1,

then f ðvi0vi0Þ ¼ 2 and f ðviovi0�1Þ ¼ f ðvi0vi0þ1Þ ¼ 0: So to dou-
ble Roman dominate vi0vi0þ1, f ðvi0þ1vi0Þ must be at least 2. If
f ðvi0þ1vi0Þ ¼ 2, then f ðCi0þ1

n Þ � nþ 1 by Lemma 2.4 and so
f ðvi0þ1vi0Þ ¼ 3: If f ðvi0þ1vi0Þ ¼ 3 then f ðvi0þ1vi0þ2Þ must be
zero in order to make f ðCi0þ1

n Þ ¼ n: i.e., the only vertex which
is outside Ci0þ1

n and double Roman dominated by vertices in
Ci0þ1
n is vi0vi0þ1: Similarly, f ðvi0�1vi0Þ ¼ 3, f ðCi0�1

n Þ ¼ n and
the only vertex which is outside Ci0�1

n and double Roman
dominated by vertices in Ci0�1

n is vi0vi0�1: Thus, for three con-
secutive copies of Cn, at most one copy can have weight n� 1
and hence f ðSðCn, 2ÞÞ � n2 � n

3 :

Case 3: n ¼ 3kþ 1, k � 1:

Define the following function on SðCn, 2Þ

f ðvivjÞ ¼
3 if i 2 f1, 2, :::, ng and j ¼ iþ 1þ 3l ðmod nÞ;

l ¼ 0, 1, :::, k� 1,
0 otherwise:

8<
:

Clearly, f is a DRDF and f ðVÞ ¼ n 3k ¼ nðn� 1Þ: Hence,
cdRðSðCn, 2ÞÞ � nðn� 1Þ:

For the reverse inequality, note that f ðCi
nÞ � n� 1 for all

i 2 f1, 2, :::, ng as in above cases and hence f ðSðCn, 2ÞÞ �
nðn� 1Þ:
Case 4: n ¼ 3kþ 2, k � 1:

Define the following function on SðCn, 2Þ:

f ðvivjÞ ¼

3 if i 2 f1, 2, :::, ng, j ¼ iþ 1þ 3l ðmod nÞ,
l ¼ 0, 1, :::, k� 1,

2 if i 2 f1, 2, :::, ng, j ¼ i� 3 ðmod nÞ,
0 otherwise:

8>>>><
>>>>:
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Clearly, f is a DRDF and f ðVÞ ¼ nð3kþ 2Þ ¼ n2:
Hence, cdRðSðCn, 2ÞÞ � n2:

For the reverse inequality, the proof is similar to case 3
except when f ðvivi�1Þ þ f ðviviþ1Þ � 4: If f ðvivi�1Þ þ
f ðviviþ1Þ ¼ 4, then f ðvivi�1Þ ¼ f ðviviþ1Þ ¼ 2 and hence
Pi
n�3 [ fvivi�1, viviþ1g can be considered as a path on n� 1

vertices of which none of the vertices are double Roman
dominated by vertices from copies of Cn other than Ci

n:

Consequently, f ðCi
nÞ � f ðPi

n�3 [ fvivi�1, viviþ1gÞ � n� 1þ
1 ¼ n: If f ðvivi�1Þ þ f ðviviþ1Þ � 5, then f ðPi

n�3 [ fvivi�2,
viviþ2gÞ � n� 5 and so f ðCi

nÞ � n: Thus in all cases,
f ðCi

nÞ � n and hence f ðSðCn, 2ÞÞ � n2: w

When p¼ 1 and q¼ 1 Kp, q is K2 and it is proved in [28]
that cIðSðKn, 2ÞÞ ¼ 2n� 1: Therefore, cIðSðK1, 1, 2ÞÞ ¼ 3 and
also cpI ðSðK1, 1, 2ÞÞ ¼ 3: Also in [6], it is found that
cdRðSðKn, 2ÞÞ ¼ 3n� 1 and hence cdRðSðK1, 1, 2ÞÞ ¼ 5: When
p¼ 1 and q¼ 2 then Kp, q ¼ P3 and it is a simple observation

that cIðSðP3, 2ÞÞ ¼ 5, cpI ðSðP3, 2ÞÞ ¼ 6 and cdRðSðP3, 2ÞÞ ¼ 8:
Hence, in the following theorems, we consider the case
p¼ 1 and q � 3:

Theorem 2.6. The Italian domination number of the general-
ized Sierpi�nski graph SðK1, q, 2Þ is cIðSðK1, q, 2ÞÞ ¼ 2qþ 1,
q � 3:

Proof. Let v1, v2, :::, vqþ1 be the vertices of K1, q where v1 is
the universal vertex. Define the following function on
SðK1, q, 2Þ as follows.

f ðvÞ ¼
2 if v ¼ viv1, i ¼ 2, 3, :::, qþ 1,

1 if v ¼ v1v1,

0 otherwise:

8><
>:

Clearly, f is an IDF and f ðVÞ ¼ 2qþ 1 and hence,
cIðSðK1, q, 2ÞÞ � 2qþ 1:

Since q � 3, each copy of Ki
1, q for i ¼ 2, 3, :::, qþ 1, con-

tains three or more leaves. So to Italian dominate these ver-
tices we need to assign weight at least 2 to the vertex viv1:
Now in K1

1, q, the vertices v1vj, j ¼ 2, 3, :::, qþ 1 are Italian

dominated by vjv1: So the only vertex which is not Italian
dominated in K1

1, q is v1v1: Hence, we have to assign weight

1 to v1v1, so that, cIðSðK1, q, 2ÞÞ � 2qþ 1: Therefore,
cIðSðK1, q, 2ÞÞ ¼ 2qþ 1: w

Theorem 2.7. The perfect Italian domination number of the
generalized Sierpi�nski graph SðK1, q, 2Þ is cpI ðSðK1, q, 2ÞÞ ¼
2ðqþ 1Þ, q � 3:

Proof. Let v1, v2, :::, vqþ1 be the vertices of K1, q where v1 is
the universal vertex. Define the following function on
SðK1, q, 2Þ as follows.

f ðvÞ ¼ 2 if v ¼ viv1, i ¼ 2, 3, :::, qþ 1, and v ¼ v1v2,
0 otherwise:

�

Clearly, f is a PID function and f ðVÞ ¼ 2qþ 2 ¼ 2ðqþ 1Þ:
Therefore, cpI ðSðK1, q, 2ÞÞ � 2ðqþ 1Þ:

In each Ki
1, q for i ¼ 2, 3, :::, qþ 1, there are q vertices

which are not adjacent to vertices of other copies of K1, q:

Hence, for any cpI -function f of SðK1, q, 2Þ, f ðKi
1, qÞ � 2, i ¼

2, 3, :::, qþ 1: Also, it is optimum to assign the weight 2 to
viv1 where i ¼ 2, 3, :::, qþ 1: Now, the only vertex which is
not perfect Italian dominated is v1v1: We cannot give the
weight 1 to v1v1, since, in this case

P
u2Nðv1viÞ f ðuÞ ¼ 3, for

i ¼ 2, 3, :::, qþ 1: Hence, we have to give weight to the verti-
ces of K1

1, q, so that
P

u2Nðv1v1Þ f ðuÞ ¼ 2, which results in

f ðK1
1, qÞ ¼ 2: Therefore, cpI ðSðK1, q, 2ÞÞ � 2qþ 2 ¼ 2ðqþ 1Þ:

Hence, cpI ðSðK1, q, 2ÞÞ ¼ 2ðqþ 1Þ: w

Theorem 2.8. The double Roman domination number of the
generalized Sierpi�nski graph SðK1, q, 2Þ is cdRðSðK1, q, 2ÞÞ ¼
3qþ 2, q � 3:

Proof. The proof is similar to that of Theorem 2.6 with the
difference that the weights 2 and 1 are replaced by 3 and 2,
respectively. w

When p ¼ q ¼ 2, Kp, q ¼ C4 and it is discussed in the
section 2.

Theorem 2.9. The Italian domination number of the general-
ized Sierpi�nski graph SðK2, q, 2Þ is cIðSðK2, q, 2ÞÞ ¼ 2ðqþ 2Þ
for p¼ 2, q � 3:

Proof. Let VðK2, qÞ ¼ fv1, v2, :::, vqþ2g be the vertex set of
K2, q and dðv1Þ ¼ dðv2Þ ¼ q: Define the following function
on SðK2, q, 2Þ as follows.

f ðvÞ ¼ 1 if v ¼ viv1, viv2, i 2 f1, 2, :::, qþ 2g,
0 otherwise:

(

It can be easily verified that f is an IDF and f ðVÞ ¼
2ðqþ 2Þ: Therefore, cIðSðK2, q, 2ÞÞ � 2ðqþ 2Þ:

In each Ki
2, q there are at least two vertices which are not

adjacent to vertices of other copies of K2, q: So to Italian
dominate Ki

2, q we need at least weight 2. Therefore,

cIðSðK2, q, 2ÞÞ � 2ðqþ 2Þ: Hence, cIðSðK2, q, 2ÞÞ ¼ 2ðqþ 2Þ: w

Proposition 2.10. The perfect Italian domination number of
generalized Sierpi�nski graph SðK2, 3, 2Þ is cpI ðSðK2, 3, 2ÞÞ ¼ 11:

Proof. Let fv1, v2, v3, v4, v5g be the vertex set of K2, 3 where
fv1, v2g and fv3, v4, v5g are the partite sets of the vertex set.
Define a function f on SðK2, 3, 2Þ as follows.

f ðvÞ¼
2 if v ¼ v2v5, v5v1,
1 if vivj, i ¼ 3, 4, j ¼ 1, 2, and v ¼ v1v3, v1v4, v2v2,
0 otherwise:

8<
:

It can be easily verified that f is a PID- function and
f ðVÞ ¼ 11 so that cpI ðSðK2, 3, 2ÞÞ � 11: (This labeling is illus-
trated in Figure 2.)

In each copy of K2, 3 there are at least 2 vertices which
are not adjacent to the vertices of other copies of K2, 3:

Hence to perfect Italian dominate each Ki
2, 3 we need
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minimum weight 2. If possible, assume that f ðKi
2, 3Þ ¼ 2 for

every i ¼ 1, 2, 3, 4, 5: In particular, f ðK1
2, 3Þ ¼ 2: Since v1v1

and v1v2 are not adjacent to any vertices of other copies of
K2, 3, these vertices must be perfect Italian dominated by the
vertices of K1

2, 3: Then, one of the following cases may arise.

Case 1: f ðv1v1Þ ¼ f ðv1v2Þ ¼ 1:

Since f ðK1
2, 3Þ ¼ 2, f ðv1vjÞ ¼ 0: Since f is a PID functionP

u2Nðv1vjÞ f ðv1vjÞ ¼ 2 and hence f ðvjv1Þ ¼ 0 for j ¼ 3, 4, 5:

Now, to perfect Italian dominate vjv1, we must haveP5
k¼3 f ðvjvkÞ ¼ 2, j ¼ 3, 4, 5: This implies, there exists at

least one vertex vjvk with f ðvjvkÞ ¼ 0: To perfect Italian
dominate this vjvk, we must have f ðvjv2Þ ¼ 2, which is a

contradiction to the fact that f ðKj
2, 3Þ ¼ 2:

Case 2:
P5

j¼3 f ðv1vjÞ ¼ 2:

Then for the vertices v1v3, v1v4 and v1v5 either two vertices
have weight 1 or one vertex has weight 2.

Subcase(a): Two vertices have weight 1 and the third vertex
has weight 0.

For definiteness, let f ðv1v3Þ ¼ f ðv1v4Þ ¼ 1 and f ðv1v5Þ ¼ 0:
Now, to perfect Italian dominate v1v5 we must have
f ðv5v1Þ ¼ 2: Since f ðK5

2, 3Þ ¼ 2, f ðv5v2Þ ¼ 0: To perfect
Italian dominate v5v2 we must have f ðv2v5Þ ¼ 2: Since
f ðK2

2, 3Þ ¼ 2, f ðv2v3Þ ¼ f ðv2v4Þ ¼ 0: To perfect Italian dom-
inate v2v3 and v2v4 we must have f ðv3v2Þ ¼ f ðv4v2Þ ¼ 2: But
the vertices v3v1 and v4v1 are not perfect Italian dominated.
To perfect Italian dominate these vertices we need more
weight, which contradicts the fact that f ðKi

2, 3Þ ¼ 2 for all i.

Subcase(b): One vertex has weight 2 and other vertices have
weight 0.

For definiteness, let f ðv1v3Þ ¼ 2, and f ðv1viÞ ¼ 0, for i ¼
1, 2, 4, 5: To perfect Italian dominate v1v4 and v1v5 we must
have f ðv4v1Þ ¼ f ðv5v1Þ ¼ 2: Since f ðK4

2, 3Þ ¼ f ðK5
2, 3Þ ¼ 2, we

have f ðv4v2Þ ¼ f ðv5v2Þ ¼ 0: To perfect Italian dominate v4v2
and v5v2 we must have f ðv2v4Þ ¼ f ðv2v5Þ ¼ 2, which is a
contradiction to the fact that f ðK2

2, 3Þ ¼ 2:

Therefore, cpI ðSðK2, 3, 2ÞÞ � 11: Hence, cpI ðSðK2, 32ÞÞ ¼ 11: w

Theorem 2.11. The perfect Italian domination number of the
generalized Sierpi�nski graph SðK2, q, 2Þ is cpI ðSðK2, q, 2ÞÞ ¼
2ðqþ 3Þ, for p ¼ 2, q � 4:

Proof. Let VðK2, qÞ ¼ fv1, v2, :::, vqþ2g be the vertex set of
K2, q where fv1, v2g and fv3, v4, :::, vqþ2g are the partite sets
of K2, q: Define a function on SðK2, q, 2Þ as follows.

f ðvÞ ¼
2 if v ¼ viv3, i ¼ 1, 2,

1 if v ¼ viv1, viv2, i ¼ 3, 4, :::, qþ 2, v ¼ viv1, i ¼ 1, 2,

0 otherwise:

8><
>:

Clearly, f is a PID-function and f ðVÞ ¼ 2ðqþ 3Þ so
that cpI ðSðK2, q, 2ÞÞ � 2ðqþ 3Þ:

Since in each copy of Ki
2, q there are at least two vertices

which are not adjacent to vertices of other copies of K2, q,
we need at least weight 2 to perfect Italian dominate each
Ki
2, q: If there are two copies of K2, q with f ðKi

2, qÞ ¼ 3, then

f ðSðK2, q, 2ÞÞ ¼ 2ðqþ 3Þ: Therefore, if possible assume that,
there exists exactly one copy of K2, q with f ðKi

2, qÞ ¼ 3 and all

other copies have weight 2. Then either f ðK1
2, qÞ ¼ 2 or

f ðK2
2, qÞ ¼ 2: For definiteness, let f ðK1

2, qÞ ¼ 2: Since both

v1v1 and v1v2 are perfect Italian dominated by the vertices
of K1

2, q, one of the following cases arises.

Case 1: f ðv1v1Þ ¼ f ðv1v2Þ ¼ 1:

Since f ðK1
2, qÞ ¼ 2, f ðv1vjÞ ¼ 0 for j ¼ 3, 4, :::, qþ 2: Since f

is a perfect Italian dominating function
P

u2Nðv1vjÞ f ðuÞ ¼ 2

so that f ðvjv1Þ ¼ 0 for j ¼ 3, 4, :::, qþ 2: To perfect Italian
dominate vjv1, we must have

P
u2Nðvjv1Þ f ðuÞ ¼ 2: This

implies, there exists at least two vertices vjvk such that
f ðvjvkÞ ¼ 0 for j, k ¼ 3, 4, :::, qþ 2, and hence f ðvjv2Þ ¼ 0,
which implies f ðKi

2, qÞ ¼ 4 for i ¼ 3, 4, :::, qþ 2, which is a

contradiction.

Case 2:
Pqþ2

j¼3 f ðv1vjÞ ¼ 2:

Then for the vertices v1v3, v1v4, :::, v1vqþ2 either two vertices
have weight 1 or one vertex has weight 2.

Subcase (a): f ðv1vjÞ ¼ 1 for exactly two j0s, and f ðv1vjÞ ¼ 0
for all other j0s, j ¼ 3, 4, :::, qþ 2:

For definiteness, let f ðv1v3Þ ¼ f ðv1v4Þ ¼ 1: Since f ðK1
2, qÞ ¼

2, f ðv1vjÞ ¼ 0 for j ¼ 5, 6, :::, qþ 2: To perfect Italian dom-
inate v1vj for j ¼ 5, 6, :::, qþ 2 we must have f ðvjv1Þ ¼ 2:

Since f ðKj
2, qÞ ¼ 2, f ðvjv2Þ ¼ 0: To perfect Italian dominate

vjv2 we must have f ðv2vjÞ ¼ 2, for j ¼ 5, 6, :::, qþ 2: This
implies, f ðK2, qÞ > 4, which is a contradiction.

Subcase (b): f ðv1vjÞ ¼ 2 for exactly one j and f ðv1vjÞ ¼ 0 for
all other j0s, j ¼ 3, 4, :::, qþ 2:

For definiteness, let f ðv1v3Þ ¼ 2 and f ðv1vjÞ ¼ 0 for j ¼
4, 5, :::, qþ 2: To perfect Italian dominate v1vj we must have

f ðvjv1Þ ¼ 2: Since f ðKj
2, qÞ ¼ 2 we must have f ðvjv2Þ ¼ 0: To

perfect Italian dominate vjv2 we must have f ðv2vjÞ ¼ 2: This
implies that f ðK2

2, qÞ > 6, which is a contradiction.

Therefore, cpI ðSðK2, q, 2ÞÞ � 2qþ 6: Hence, cpI ðSðK2, q, 2ÞÞ ¼
2ðqþ 3Þ: w

Figure 2. Illustration of SðK2, 3, 2Þ:

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 5

12



Theorem 2.12. The double Roman domination number of
generalized Sierpi�nski graph SðK2, 3, 2Þ is cdRðSðK2, 3, 2ÞÞ ¼ 18:

Proof. Let fv1, v2, v3, v4, v5g be the vertex set of K2, 3 where
fv1, v2g and fv3, v4, v5g are the partite sets of the vertex set.
Define a function f as follows.

f ðvÞ ¼ 3 if v ¼ v1v3, v2v4, v2v5, v3v2, v4v1, v5v1,

0 otherwise:

(

Clearly, f is a DRDF and cdRðSðK2, 3, 2ÞÞ � 18:
To prove the reverse inequality, note that in each copy of

K2, 3 in SðK2, 3, 2Þ there are at least two vertices which are
not adjacent to other copies of K2, 3: Hence, for any cdR-
function f of SðK2, 3, 2Þ, f ðKi

2, 3Þ � 3 for all i 2 f1, 2, :::, 5g so
that f ðSðK2, 3, 2ÞÞ � 15: Therefore, in order to prove
cdRðSðK2, 3, 2ÞÞ ¼ 18, we need only to prove that there does
not exist any DRDF with weight 15, 16 or 17.

Claim 1: There does not exist a DRDF f with f ðSðK2, 3,
2ÞÞ ¼ 15:

Proof of Claim 1: If there exists a DRDF f with
f ðSðK2, 3, 2ÞÞ ¼ 15, then f ðv1vjÞ ¼ 3 for exactly one j ¼
3, 4, 5: For definiteness, let f ðv1v3Þ ¼ 3: Now to double
Roman dominate v1v4 and v1v5, f ðv4v1Þ and f ðv5v1Þ must
be three. Since, f ðK4

2, 3Þ ¼ f ðK5
2, 3Þ ¼ 3, v4v2 and v5v2 should

be double Roman dominated by v2v4 and v2v5 respectively
which makes f ðK2

2, 3Þ � 6 which is a contradiction.

Claim 2: There does not exist a DRDF f with f ðSðK2, 3,
2ÞÞ ¼ 16:

Proof of Claim 2: If there exists a DRDF f with

f ðSðK2, 3, 2ÞÞ ¼ 16, then f ðKi0
2, 3Þ ¼ 4 for exactly one i0 with

1 � i0 � 5 and f ðKi
2, 3Þ ¼ 3, for every i 2 f1, 2, :::, 5g, i 6¼ i0:

Then at least one among f ðK1
2, 3Þ and f ðK2

2, 3Þ must be 3. For

definiteness, let f ðK1
2, 3Þ ¼ 3: Since f ðKj

2, 3Þ � 4, for every j ¼
2, 3, 4, 5, we get the same contradiction as in the proof of
claim 1.

Claim 3: There does not exist a DRDF f with
f ðSðK2, 3, 2ÞÞ ¼ 17:

Proof of Claim 3: If there exists a DRDF f with
f ðSðK2, 3, 2ÞÞ ¼ 17, then the following two cases arise.

(i) f ðKi0
2, 3Þ ¼ 5 for exactly one i0 with 1 � i0 � 5 and

f ðKi
2, 3Þ ¼ 3, for every i 2 f1, 2, :::, 5g, i 6¼ i0:

(ii) f ðKi
2, 3Þ ¼ 4 for exactly two i0s say i0, j0 with 1 � i0, j0 �

5 and f ðKi
2, 3Þ ¼ 3, for every i 2 f1, 2, :::, 5g, i 6¼ i0, j0:

In case (i) at least one among f ðK1
2, 3Þ and f ðK2

2, 3Þ must

be 3. For definiteness, f ðK1
2, 3Þ ¼ 3: Then as in the proof of

claim 1 we may take f ðv1v3Þ ¼ f ðv4v2Þ ¼ f ðv5v2Þ ¼ 3: If
f ðK4

2, 3Þ ¼ f ðK5
2, 3Þ ¼ 3, then we get the same contradiction

as in the proof of claim 1. Hence one among f ðK4
2, 3Þ and

f ðK5
2, 3Þ must be 5. For definiteness let f ðK4

2, 3Þ ¼ 5: Since

f ðK5
2, 3Þ ¼ 3, to double Roman dominate v5v2, f ðv2v5Þ ¼ 3:

But v2v4 is not get double Roman dominated and hence
f ðK2

2, 3Þ � 3, which is a contradiction. Hence, we conclude
that cdRðSðK2, 3, 2ÞÞ � 18: w

Now we obtain the Italian domination number, perfect
Italian domination number and double Roman domination
number of Sierpi�nski graph of bistar Bm, n, when t¼ 2.

Theorem 2.13. The Italian domination number of the
generalized Sierpi�nski graph SðBm, n, 2Þ is cIðSðBm, n, 2ÞÞ ¼
4ðmþ nþ 1Þ, m, n � 3:

Proof. Let VðBm,nÞ¼ fv1,v2, :::,vm,vmþ1,vmþ2, :::,vmþn,vmþnþ1,
vmþnþ2g be the vertex set of Bm,n: Let dðvmþnþ1Þ ¼
mþ 1, dðvmþnþ2Þ ¼ nþ 1: Define a function f on Bm, n as
follows.

f ðvÞ ¼
2 if v ¼ vmþnþ1vmþnþ2, vmþnþ2vmþnþ1 or

v ¼ vivmþnþ1, vivmþnþ2, i 2 f1, 2, :::,mþ ng,
0 otherwise:

8><
>:

Clearly, f is an IDF and f ðVÞ ¼ 4ðmþ nÞ þ 4 ¼ 4ðmþ nþ
1Þ so that cIðSðBm, n, 2ÞÞ � 4ðmþ nþ 1Þ:

In each Bi
m, n for i 2 f1, 2, :::,mþ ng there are mþ n

leaves. To Italian dominate these copies we need at least
weight 4. For that, it is optimum to assign weight 2 to the
vertices vivmþnþ1 and vivmþnþ2: In Bmþnþ1

m, n and Bmþnþ2
m, n there

are only n and m leaves, respectively. To Italian dominate
these vertices we need at least weight 2. Therefore,
cIðSðBm, n, 2ÞÞ � 4ðmþ nÞ þ 2þ 2 ¼ 4ðmþ nþ 1Þ: Hence,
cIðSðBm, n, 2ÞÞ ¼ 4ðmþ nþ 1Þ: w

Corollary 2.14. The perfect Italian domination number of
the generalized Sierpi�nski graph SðBm, n, 2Þ is cpI ðSðBm, n, 2ÞÞ ¼
4ðmþ nþ 1Þ:

Proof. In the proof of the above theorem we have defined
an Italian dominating function with the property that
every vertex with weight 0 is adjacent to exactly one ver-
tex with weight 2. Therefore, cpI ðSðBm, n, 2ÞÞ � 4ðmþ nþ
1Þ: We know that cIðSðBm, n, 2ÞÞ � cpI ðSðBm, n, 2ÞÞ: Hence,
cpI ðSðBn, n, 2ÞÞ ¼ 4ðmþ nþ 1Þ: w

Theorem 2.15. The double Roman domination number of the
generalized Sierpi�nski graph SðBm, n, 2Þ is cdRðSðBm, n, 2ÞÞ ¼
6ðmþ nþ 1Þ, m, n � 3:

Proof. The proof is similar to that of Theorem 2.13 with the
difference that the weight 2 is replaced by 3. w

References

[1] Ahangar, H. A., Chellali, M, Sheikholeslami, S. M. (2017). On
the double Roman domination in graphs. Discrete Appl. Math.
232: 1–7.

[2] Alizadeh, F., Maimani, H. R., Majd, L. P, Parsa, M. R. (2022).
Roman {2}-domination in graphs and graph products. Iran. J.
Math. Sci. Inform. In Press.

6 J. VARGHESE ET AL.

13



[3] Amjadi, J., Nazari-Moghaddam, V., Sheikholeslami, S. M,
Volkmann, L. (2018). An upper bound on the double Roman
domination number. J. Comb. Optim. 36(6): 1–9.

[4] Anu, V, Aparna, L. S. (2018). Double Roman domination num-
ber. Discrete Appl. Math. 244: 198–204.

[5] Anu, V, Aparna, L. S. (2021). Impact of some graph operators
on double Roman domination number. Int. J. Comb. Graph
Theory Appl. 6(1): 97–105.

[6] Anu, V, Aparna, L. S. (2020). The double Roman domination
number of generalized Sierpi�nski graphs. Discrete Math.
Algorithms Appl. 12(4): Article 2050047.

[7] Aparna, L. S, Amala, B. (2022). Variations of Roman domin-
ation in Kneser graphs. Manuscript.

[8] Balakrishnan, R, Ranganathan, K. (1999). A Text Book of Graph
Theory. New York: Springer.

[9] Beeler, R. A., Haynes, T. W, Hedetniemi, S. T. (2016). Double
Roman domination. Discrete Appl. Math. 211(1): 23–29.

[10] Chellali, M., Haynes, T. W., Hedetniemi, S. T, McRae, A. A.
(2016). Roman {2}-domination. Discrete Appl. Math. 204:
22–28.

[11] Chellai, M., Rad, N. J., Sheikholeslami, S. M, Volkmann, L.
(2020). Roman domination in graphs. In: Haynes, T.W.,
Hedetniemi, S.T., Henning, M. A., eds. Topics in Domination in
Graphs. Berlin/Heidelberg: Springer, pp. 365–409.

[12] Chellali, M., Jafari Rad, N., Sheikholeslami, S. M, Volkmann, L.
(2020). Varieties of Roman Domination II. AKCE Int. J. Graphs
Comb. 17(3): 966–984.

[13] Chellai, M., Rad, N. J., Sheikholeslami, S. M, Volkmann, L.
(2021). Varieties of Roman Domination, Structures of
Domination in Graphs. In: Haynes, T.W., Hedetniemi, S.T.,
Henning, M. A., eds. Topics in Domination in Graphs. Berlin/
Heidelberg: Springer, pp. 273–307.

[14] Cockayne, E. J., Dreyer, P. A., Jr, Hedetniemi, S. M,
Hedetniemi, S. T. (2004). Roman domination in graphs.
Discrete Math. 278: 1–3.

[15] Deepalakshmi, J., Marimuthu, G., Somasundaram, A,
Arumugam, S. (In press). Domination parameters of a splitting
graph of a graph. Commun. Comb. Optim.

[16] Desormeaux, W. J., Haynes, T. W, Henning, M. A. (2018).
Domination parameters of a graph and its complement.
Discuss. Math. Graph Theory 38(1): 203–215.

[17] Gao, H., Xi, C., Li, K., Zhang, Q, Yang, Y. (2019). The Italian
domination number of generalized Petersen graphs P(n,3).
Mathematics 7(8): 714. Article 714.

[18] Gao, H., Xu, T, Yang, Y. (2019). Bagging approach for Italian
domination in Cn w Pm: IEEE Access.

[19] Gravier, S., Kov�se, M, Parreau, A. (2011). Generalized
Sierpinski Graphs 1. https://www.semanticscholar.org/paper/
Generalized-Sierpinski-graphs-1-Gravier-Kovse/3c21ce24174d1cd
f788e2988702c1e81dc686436.

[20] Hajibaba, M, Rad, N. J. (2019). On domination, 2-domination
and Italian domination numbers. Util. Math. 111: 271–280.

[21] Hao, G., Chen, X, Volkmann, L. (2019). Double Roman domin-
ation in digraphs. Bull. Malays. Math. Sci. Soc. 42(5):
1907–1920.

[22] Haynes, T. W., Henning, M. A, Volkman, L. (2020). Graphs
with large Italian domination number. Bull. Malays. Math. Sci.
Soc. 43(6): 4273–4287.

[23] Haynes, T. W, Henning, M. A. (2019). Perfect Italian domin-
ation in trees. Discrete Appl. Math. 260: 164–177.

[24] Henning, M. A, Klostermeyer, W. F. (2017). Italian domination
in trees. Discrete Appl. Math. 217: 557–564.

[25] Hinz, A. M., Klav�zar, S, Zemljic�, S. S. (2017). A survey and
classification of Sierpi�nski-type graphs. Discrete Appl. Math.
217: 565–600.

[26] Jismy, V, Aparna, L. S. (2022). Impact of vertex addition on
Italian domination number. Indian J. Discrete Math. 8(1):
11–20.

[27] Jismy, V., Anu, V, Aparna, L. S. (2021). Italian domination and
perfect Italian domination on Sierpi�nski graphs. J. Discrete
Math. Sci. Cryptogr. 24(7): 1885–1894.

[28] Jismy, V, Aparna, L. S. (2021). Italian domination on
Mycielskian and Sierpi�nski graphs. Discrete Math. Algorithms
Appl. 13(4): Article 2150037.

[29] Jismy, V, Aparna, L. S. (2022). Perfect Italian domination num-
ber of graphs. Palest. J. Math. 11(1): 260–270.

[30] Klav�zar, S, Milutinovi�c, U. (1997). Graphs S(n,k) and a variant
of the tower of Hanoi problem. Czechoslov. Math. J. 47(1):
95–104.

[31] Klav�zar, S., Milutinovi�c, U, Petr, C. (2002). 1-Perfect codes in
Sierpi�nski graphs. Bull. Austral. Math. Soc. 66(3): 369–384.

[32] Lauri, J, Mitillos, C. (2020). Perfect Italian domination on pla-
nar and regular graphs. Discrete Appl. Math. 285: 676–687.

[33] Liu, C. A. (2020). Domination in Sierpi�nski Graphs SðKn, tÞ:
arXiv:2008.09807v1.

[34] Mojdeh, D. A., Masoumi, I, Volkman, L. (2022). Restrained
double Roman domination of a graph. RAIRO-Oper. Res. 56(4):
2293–2304.

[35] Poureidi, A, Rad, N. J. (2020). On the algorithmic complexity
of Roman {2}-domination. Iran. J. Sci. Technol. Trans. Sci.
44(3): 791–799.

[36] Poklukar, D. R, Zerovnik, J. (2022). On the double Roman
domination in generalized Petersen graphs Pð5k, kÞ:
Mathematics 10(1): Article 119.

[37] Ramezani, F., Rodr�ıguez-Bazan, E. D, Rodr�ıguez-Vel�azquez,
J. A. (2017). On the Roman domination number of generalized
Sierpi�nski graphs. Filomat 31(20): 6515–6528.

[38] Yang, H, Zhou, X. (2020). Some properties of double Roman
domination. Discrete Dyn. Nat. Soc. 2020: 1–5. Article 6481092.

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 7

14

https://www.semanticscholar.org/paper/Generalized-Sierpinski-graphs-1-Gravier-Kovse/3c21ce24174d1cdf788e2988702c1e81dc686436
https://www.semanticscholar.org/paper/Generalized-Sierpinski-graphs-1-Gravier-Kovse/3c21ce24174d1cdf788e2988702c1e81dc686436
https://www.semanticscholar.org/paper/Generalized-Sierpinski-graphs-1-Gravier-Kovse/3c21ce24174d1cdf788e2988702c1e81dc686436


Palestine Journal of Mathematics

Vol. 11(1)(2022) , 260–270 © Palestine Polytechnic University-PPU 2022

Perfect Italian Domination Number of Graphs

Jismy Varghese and Aparna Lakshmanan S.

MSC 2010 Classification: primary: 05C69, secondary: 05C76

Keywords: Roman domination number, Perfect domination number, Perfect Italian domination number, Cartesian product,
Mycielskian of a graph.

Abstract: In this paper, an upper bound for the perfect Italian domination number of the
cartesian product of any two graphs is obtained and the exact value of this parameter for carte-
sian product of some special graphs are obtained. We have also proved that for any two positive
integers a, b there exists a graph G and an induced subgraph H of G such that γpI (G) = a and
γpI (H) = b. Relationship of the perfect Italian domination number with the Roman domination
number and the perfect domination number of a graph G are obtained and the corresponding re-
alization problems are also solved. We have also obtained the perfect Italian domination number
of the Mycielskian of a graph in terms of the perfect domination number of the graph. Some
open problems related to this parameters are also included.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). If there is no ambiguity in
the choice of G, then we write V (G) and E(G) as V and E respectively. A subset S ⊆ V (G)
of vertices is called a dominating set if every v ∈ V (G) is either an element of S or is adjacent
to an element of S [12]. The domination number, γ(G) is the minimum cardinality of a dom-
inating set of G. A dominating set S is a perfect dominating set if |N(v)

⋂
S| = 1 for each

v ∈ V −S, where N(v) is the collection of all vertices that are adjacent to the vertex v. The per-
fect domination number, γp(G) is the minimum cardinality of a perfect dominating set ofG [12].

The weight of a function f defined on the vertex set V of a graph G, f(V ) is
∑

u∈V f(u).
A map f : V (G) → {0, 1, 2} is a Roman dominating function for a graph G if for every vertex
v with f(v) = 0, there exists at least one vertex u ∈ N(v) such that f(u) = 2. The minimum
weight of a Roman dominating function on G is called the Roman domination number of G,
γR(G) [4].

An Italian dominating function, of a graph G is a function f : V (G) → {0, 1, 2} satisfying
the condition that for every v ∈ V (G) with f(v) = 0,

∑
u∈N(v) f(u) ≥ 2, i.e., either v is adjacent

to a vertex u with f(u) = 2 or to at least two vertices x and y with f(x) = f(y) = 1. The Italian
domination number of G, γI(G) is the minimum weight of an Italian dominating function on G
[10].

A function f : V (G) → {0, 1, 2} is a perfect Italian dominating function (abbreviated as
PID-function) on G if for every vertex v ∈ V (G) with f(v) = 0,

∑
u∈N(v) f(u) = 2. The

perfect Italian domination number of G, γpI (G), is the minimum weight of a PID-function of G.
A PID-function of G with weight γpI (G) is called a γpI (G)-function of G [11].

We also denote a function f : V (G)→ {0, 1, 2} as f = (V f
0 , V

f
1 , V

f
2 ) or simply (V0, V1, V2),

where Vi is the set of all vertices which are assigned the value i for i = 0, 1, 2. For any
subgraph H of G, the sum of the weights of the vertices of H is denoted by f(H). i.e.,
f(H) =

∑
u∈V (H) f(u). In [9] the authors characterize the graphs G with γpI (G) equal to 2

and 3 and determined the exact value of the parameter for several simple structured graphs. It
is also proved that it is NP-complete to decide whether a given bipartite graph admits a perfect
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Italian dominating function of weight k. The perfect Italian domination number of Sieriński
graphs and generalized Sierpiński graphs are studied in [8] and [7] respectively.

For disjoint graphs G and H , the join G + H has vertex set V (G) ∪ V (H) and edge set
E(G) ∪ E(H) ∪ {uv : u ∈ V (G) and v ∈ V (H)} [12]. The Cartesian product of two graphs
G and H , G�H has vertex V (G) × V (H) and two vertices (u1, v1) and (u2, v2) are adjacent if
either u1 = u2 and v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G) [5]. It is a simple observation that
G�H can be partitioned as |V (H)| copies of G and |V (G)| copies of H .

The Mycielskian of a graph G, M(G) is the graph with vertex set V (G)∪V ′(G)∪{w} where
V ′(G) = {ui : vi ∈ V (G)} and edge set E(G) ∪ {viuj : vivj ∈ E(G)} ∪ {wui : ui ∈ V ′(G)}.
The double Roman domination number and the Italian domination number of the Mycielskian
of a graph have been studied in [2] and [6].

The following observations are simple.

Observation 1. For a graph with no edge and n vertices, γpI (G) = n.

Observation 2. For any complete bipartite graph Kp,q,

γpI (Kp,q) =

{
4, p, q ≥ 3,
2, otherwise.

Observation 3. For complete graph Km, γ
p
I (Km) = 2.

Observation 4. For every graph G, γ(G) ≤ γI(G) ≤ γpI (G).

Observation 5. Let G be a graph. γpI (G) = 2 if and only if G = H1 ∨ H2 where H1 =
K1,K2 or 2K1.

Proof. If γpI (G) = 2, in a PID-function of G, either a vertex v is assigned the value 2 and all
the remaining vertices are adjacent to v or two vertices v and w are assigned the value 1 and all
the remaining vertices are adjacent to both v and w. The adjacency between v and w is optional.
Therefore, G is K1 ∨H2, K2 ∨H2 or 2K1 ∨H2. The converse is a simple observation.

All notations and terminology not mentioned here are from [3].

2 Cartesian Product

In this section, we have obtained an upper bound for the Cartesian product of two graphs in terms
of the original graph. Exact values for some special classes are also obtained.

Theorem 2.1. For any graphs G and H

γpI (G�H) ≤ min{|V (H)|γpI (G), |V (G)|γ
p
I (H)}.

Proof. Let g be γpI -function of G. Let f : V (G) × V (H) → {0, 1, 2} be γpI -function of G�H
defined by f(u, v) = g(u), for every u ∈ V (G) and v ∈ V (H). Then a vertex (u, v) has weight
zero, then it has neighbors with weight exactly two and all other vertices which are adjacent to
(u, v) has weight zero. Therefore, f is a γpI -function, and γpI (G�H) ≤ |V (H)|γpI (G). Using the
same arguments we can prove that γpI (G�H) ≤ |V (G)|γpI (H). Therefore,

γpI (G�H) ≤ min{|V (H)|γpI (G), |V (G)|γ
p
I (H)}.

There are examples of pairs of graphs for which equality and strict inequality of the above
theorem are attained. For instance, let G = P4 and H = P2. Then γpI (G�H) = 4 < 6 =
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min{|V (H)|γpI (G), |V (G)|γ
p
I (H)} and let G = K1,3 and H = P3. Then γpI (G�H) = 6 =

min{|V (H)|γpI (G), |V (G)|γ
p
I (H)}.

The following theorem proved in [1] is used in the proof of Theorem 2.3

Theorem 2.2. ([1].) γI(P2�Pn) = n.

Theorem 2.3.

γpI (P2�Pn) =

{
n+ 1; if n = 1, 3, 5
n; otherwise.

Proof. Let f = (V0, V1, V2) be the γpI function of P2�Pn. Let u1, u2, u3, ..., un be the vertices of
the first copy of Pn and v1, v2, v3, ..., vn be the vertices of the second copy of Pn. We know that
γI(P2�Pn) = n and by observation 4, γI(G) ≤ γpI (G). Therefore, γpI (P2�Pn) ≥ n.

When n = 2, P2�Pn is C4 and γpI (C4) = 2.

When n = 3, define f as follows.

f(u) =


2; u = v3,

1; u = u1, v2,

0; otherwise.

Then γpI (P2�Pn) = 4.

When n = 4, define f as follows.

f(u) =

{
1; u = u2, u3, v1, v4,

0; otherwise.

Then γpI (P2�Pn) = 4.

When n = 5, define f as follows.

f(u) =


2; u = u5

1; u = u1, u4, v2, v3,

0; otherwise.

Then γpI (P2�Pn) = 6.

When n = 6, define f as follows.

f(u) =

{
1; u = u2, u3, u6, v1, v4, v5,

0; otherwise.

Then γpI (P2�Pn) = 6.

When n ≥ 7, and n is odd, define f as follows.

f(u) =


2; u = uj , j ≡ 4(mod6)
1; u = uj , j ≡ 1(mod6),

u = vj , j ≡ 0(mod2);
0; otherwise.

When n is even, define f as follows

f(u) =


1; u = uj , j ≡ 0, 1(mod4),

u = vj , j ≡ 2, 3(mod4);
0; otherwise.
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Clearly, in each case, f is a γpI -function and f(V ) = n. Hence the theorem.

Theorem 2.4. If m and n are positive integers then

γpI (Km�Kn) =

{
n; if m = n

min{2m, 2n}; otherwise.

Proof. Let f = (V0, V1, V2) be the γpI -function of Km�Kn. As we have already mentioned in
the introduction Km�Kn can be viewed as m rows of Kn and n columns of Km. Let ui,j ,
i = 1, 2, ..m and j = 1, 2, ...n be the vertices of Km�Kn.

Case 1: m = n.

Define f as follows.

f(uij) =

{
1; i = j,

0; otherwise.

Then γpI (Kn�Kn) ≤ n.

Claim: Exactly one vertex in each copy of Kn has weight 1.

If possible assume that there exists a copy of Kn in which all vertices have weight 0. Then
these vertices are dominated by vertices from corresponding columns. Then each column should
have weight 2, i.e., f(V ) = 2n > n.

If possible assume that there exist a copy ofKn which has weight at least 2. Then either there
is a vertex with weight 2 or two vertices with weight 1 each in that row.

Case (a): Let uij and uik be the two vertices with weight 1.

Then in the ith row either all other vertices have weight 1 or all other vertices have weight 0.
If all other vertices are assigned zero then vertices in the corresponding column is zero. In order
to dominate these vertices we have to assign weight 2 in each row. Then f(V ) = 2n > n. If all
other vertices are assigned weight 1, then to dominate any vertex with weight 0 in any other row
we have to assign a vertex with weight 1 in each row. Then f(V ) = 2n− 1 > n.

Case(b): Let uij be a vertex in ith row that has weight 2.

Similar to case(a), we can prove that, in this case also f(V ) = 2n > n.
Therefore, weight of each row is one and hence, γpI (Kn�Kn) = n.

Case 2: m 6= n.

Without loss of generality, let m < n. Define f as follows.

f(uij) =

{
2; i = 1, 2, ...m and j = 1,
0; otherwise.

Then γpI (Km�Kn) ≤ 2m = min{2m, 2n}.

If for every γpI -function f ,
∑n

j=1 f(uij) = 2, for each i, then γpI (Km�Kn) = 2m. Therefore,
assume that there exists a γpI -function f such that

∑n
j=1 f(uij) < 2 for some i = k. Therefore,∑n

j=1 f(ukj) = 0 or 1.

If
∑n

j=1 f(ukj) = 0 then to dominate ukj for j = 1, 2, ...n,
∑⋃

i=1 f(uij) = 2 which implies
f(V ) = 2n > 2m, which is a contradiction to the fact that f is a γpI -function.
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If
∑n

j=1 f(ukj) = 1 then there exists l such that f(ukj) = 0, if j 6= l and f(ukl) = 1. But then
to dominate ukj , j 6= l,

∑m
i=1 f(uij) = 1. i.e., exactly one vertex in each column has weight

1 and all other vertices have weight 0. But number of rows is less than number of columns.
Therefore, there are more than one vertex with weight 1 in at least one row, say i = k

′
. But, then∑n

j=1 f(uk′ j) = 2 or n. If
∑n

j=1 f(uk′ j) = 2 then exactly two vertices in the (k
′
)
th

row have
weight 1 and all others have weight 0. Also, the column containing this 0’s must be full of 0’s.
But this contradicts the fact that

∑m
i=1 f(uij) = 1, for all j 6= l. Therefore,

∑n
j=1 f(uk′ j) = n.

But then f(V ) = n+m− 1 ≥ m+ 1 +m− 1 (since, n ≥ m+ 1) = 2m.

Therefore, if m 6= n then γpI (Km�Kn) = 2m, where m < n.

3 Realization problems

Theorem 3.1. Given any two positive integers a, b ≥ 3, there exist a graph G and induced
subgraph H of G such that γpI (G) = a and γpI (H) = b.

Proof. We consider the following three cases.
Case 1: b ≤ a.

Let G = P2a−1 and H = P2b−1. Then γpI (G) = d
2(a−1)+1

2 e = a, and γpI (H) = d 2(b−1)+1
2 e =

b.

Case 2: b > a.

Let v1, v2, ...v2b−1 be a path on 2b − 1 vertices. Construct G as follows. Let u and v be
two vertices adjacent to v2a−3, v2a−2, ...v2b−1 and let v2a−4 be adjacent to v alone. Clearly,
γpI (G) = d

2a−5+1
2 e+ 2 = a. Also H = P2b−1 is an induced subgraph and γpI (H) = b.

Lemma 3.2. For any graph G, γR(G) ≤ 2γpI (G)− 1.

Proof. Let f = (V f
0 , V

f
1 , V

f
2 ) be a γpI -function of G. Let u ∈ V f

1 . Define g = (V f
0 , u, V

f
1 ∪V

f
2 −

u). Since every vertex in V f
0 is adjacent to exactly one vertex in V f

2 or two vertices in V f
1 , in

g every vertex in V g
0 will have at least one neighbor with weight 2. Therefore, this assignment

gives a Roman dominating function. Now g(V ) = 2(|V f
1 ∪ V

f
2 |)− 1 ≤ 2γpI (G)− 1. Therefore,

γR(G) ≤ 2γpI (G)− 1.

If γR(G) = 1, G is K1, and γpI (G) = 1 and vice versa. Similarly, if γR(G) = 2 then G has a
universal vertex and γpI (G) = 2, but the converse is not true. If γR(G) = 3 and γpI (G) = 2, then
let G = K2,n.

Theorem 3.3. Given a, b ≥ 3 such that a ≤ 2b − 1, then there exists a graph G such that
γR(G) = a and γpI (G) = b.

Proof. We consider the following cases.

Case a: a ≥ 3, b ≥ a+ 1 and a is odd.

ConsiderKc
p∨Pb−3,where p is arbitrarily large. Attach a vertex u to every vertex ofKc

p∨Pb−3
and a pendent vertex v to an end vertex of Pb−3. Then γR(G) = 3 where γR-function f can be
defined as f(u) = 2, f(v) = 1 and f(vi) = 0 for all other vertices. Also, γpI (G) = b where γpI -
function g can be defined as g(u) = 2, g(v) = 1 and all the vertices of Pb−3 has weight 1. If we
attach a P3 to the vertex u by an edge then γR(G) = 3+ 2 = 5 and γpI (G) = b+ 2. Similarly, by
attaching P3k to the already attached P3, we can get γR(G) = 3+2k and γpI (G) = b+2k, b > a.

Case b: a ≥ 4, b ≥ a+ 1 and a is even.
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ConsiderKc
p∨Pb−4,where p is arbitrarily large. Attach a vertex u to every vertex ofKc

p∨Pb−4
and attach both the vertices p and q of K2 to an end vertex of Pb−4. Then γR(G) = 4, where
γR-function f can be defined as f(u) = 2 and f(p) = f(q) = 1. Also, γpI (G) = b, where
γpI -function g can be defined as g(u) = 2, g(p) = g(q) = 1 and all the vertices of Pb−4 has
weight 1. Attach a P3 with u by an edge then γR(G) = 4 + 2 and γpI (G) = b+ 2 . Similarly, by
attaching P3k as in the previous case we can get γR(G) = 4 + 2k and γpI (G) = b+ 2k, b > a.

Case c: a = b and a is odd.

Consider P2a−1. Let v1, v2, v3, ..., v2a−1 be the vertices of P2a−1. Let u be a vertex which is
attached to v2, v4, v6, ...v2a−2 and also v1 and v2a−1. Then γR(G) = a, where γR-function f can
be defined as f(u) = 2, f(v3) = f(v5) = f(v7) = ... = f(v2a−3) = 1, f(v) = 0, for all other
vertices and γpI (G) = a, where γpI -function g can be defined as g(v1) = g(v3) = g(v5) = ... =
g(v2a−1) = 1, g(v) = 0, for all other vertices. In particular, when a = 5 the graph is given in
Figure 1.

Figure 1. A graph with a = b = 5

Similarly, we can construct all graphs with γR(G) = γpI (G) when γR(G) is odd. So we have
constructed all graphs with a ≤ b.

Case d: a > b.

Let G be the graph constructed as follows. Let v1, v2, , ..., vb be a set of independent vertices.
Corresponding to every pair (vi, vj), i 6= j let uij be a vertex adjacent to vi and vj alone. Then
γpI (G) = b, where f(vi) = 1, for all i = 1, 2, 3, ..., b and f(uij) = 0, for all i, j ∈ {1, 2, 3, ..b}
and i 6= j is a γpI -function of G. But γR(G) = 2b− 1, where g(vi) = 2, for i = 1, 2, 3, ..., b− 1
and g(vb) = 1 is a γR-function. In particular, when a = 7 and b = 4, the graph is given in Figure
2.

Figure 2. A graph with a = 7 and b = 4

Now, if we delete one vertex from the bC2 vertices, γpI (G) will not change, whereas γR(G)
reduces by 1. (Note that h(vk) = 2 for all k ∈ {1, 2, 3, ..., b} \ {i} and h(vi) = 1 is a γR(G)-
function of G). Proceeding like this we can reduce γR(G) up to γpI + 1. Hence the theorem.
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4 Relation with perfect domination number

In this section, we study the relationship between perfect Italian domination number and perfect
domination number of a graph. The following are simple observations.

Observation 6: γpI (G) ≤ 2γp(G).

Proof. Let P be a γp-set of G. Then

f(v) =

{
2; if v ∈ P,
0; otherwise.

is a PID-function. Therefore, γpI (G) ≤ 2γp(G).

Observation 7: If there exists a γpI -function of G such that V1 = φ then γpI (G) = 2γp(G).

Proof. If there exists a γpI -function of G such that V1 = φ, then the vertices which are assigned
the value 2 forms a γp-set. Therefore, γp(G) ≤ 1

2γ
p
I (G). Hence, γpI (G) ≥ 2γp(G) and by

observation 6, γpI (G) = 2γp(G).

We know that the Italian domination number of a graph G lies between γ(G) and 2γ(G).
Here we have proved that γpI (G) ≤ 2γp(G). It is most expected that γp(G) serves as a lower
bound for γpI (G). But this is not true and γpI (G) can be arbitrarily smaller than γp(G). The
following theorem settles the corresponding realization problem.

Theorem 4.1. Given any two positive integers a, and b such that b ≤ 2a there exists a graph G
such that γp(G) = a and γpI (G) = b.

Proof. Let a and b be any two positive integers such that b ≤ 2a.

Case 1: a ≤ b ≤ 2a− 1.

Consider k copies of P5, say vi1vi2vi3vi4vi5 for i = 1, 2, ...k, where vi1 = vj1, for all
i, j ∈ {1, 2, ..., k}. Then γpI (G) = 2k + 1, where γpI -function f can be defined as f(vi1) =
f(vi3) = f(vi5) = 1, for all i = 1, 2, ..., k and 0, otherwise. Also γp(G) = k + 1, where the
perfect dominating set consist of the vertices vi1 and vi4, i = 1, 2, ..., k. If we extend the path
v11v12v13v14v15 to a path of length 2l+ 5, then γpI (G) = 2k + 1 + l and γp(G) = k + 1 + l. Let
k = b− a and l = 2a− b− 1, so that γp(G) = a and γpI = b.

Case 2: b = 2a.

Let G be the graph Pa : v1v2, ..., va, with atleast two pendent vertices attached to every
vi, i = 1, 2, ..., a. Then γpI (G) = 2a and γp(G) = a.

Case 3: a > b.

Subcase (a): b− a is even.

Let G = Kc
2 + kK2. Then γpI (G) = 2, where vertices of Kc

2 is assigned the value 1 and
others 0, is the γpI -function of G. But the γp-set contains all the vertices of the graph and hence
γp(G) = 2k + 2. By attaching a path of length 2l to one of the vertices of Kc

2 , as in case 1, we
get γpI (G) = 2 + l and γp(G) = 2k + 2 + l. Let k = a−b

2 and l = b − 2 so that γp(G) = a and
γpI = b.

Subcase (b): b− a is odd.

Let G = Kc
2 + (K3 ∪ kK2). Then as in the previous case, γpI (G) = 2 and γp(G) = 2k + 5.

By attaching a path of length 2l to one of the vertices of Kc
2 , we get γpI (G) = 2+ l and γp(G) =
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2k + 5 + l. Let k = a−b−3
2 and l = b− 2 so that γp(G) = a and γpI = b.

5 Mycielskian of a graph

In this section, we study the relationship between the perfect Italian domination number of My-
cielskian of a graph and the perfect domination number of the graph.

Theorem 5.1. For a connected graph G, γpI (M(G)) ≤ 2γp(G) + 1.

Proof. Let P be a γp-set of G. Let P ′ = {ui, vi : vi ∈ P} ∪ {w}. Define a PID-function as
follows.

f(v) =

{
1; if v ∈ P ′,

0; otherwise.

Then f(M(G)) = 2γp(G) + 1. Therefore, γpI (M(G)) ≤ 2γp(G) + 1.

Although, many graph classes satisfy equality, it may be noted that there are infinite number
of families of graph which satisfy strict inequality. If we consider the graph G = Kc

2
∨
kK2,

then γpI (M(G)) = 6 and γp(G) = 2k + 2, so that the difference can be arbitrarily large. An
illustration where k = 2 is given in Figure 3, in which f(v3) = f(v4) = f(u1) = f(u2) = 1 and
f(w) = 2 gives a γpI -function of M(G).

Figure 3. M(Kc
2 ∨ 2K2).

Theorem 5.2. IfG has a γpI -function such that V1 = φ, then γpI (M(G)) = γpI (G)+1 = 2γp(G)+
1.

Proof. Assume that G has a γpI -function f such that V f
1 = φ. We can define a perfect Italian

dominating function g : V (M(G))→ {0, 1, 2} as follows.

g(v) =

{
1; for v = vi and ui such that f(vi) = 2 and v = w,

0; otherwise.

Therefore, γpI (M(G)) ≤ γpI (G) + 1.

To prove the reverse inequality, let f be a PID-function of M(G).

Case 1:
∑n

i=1 f(ui) 6= 2.
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Define g : V (G)→ {0, 1, 2} as follows.

g(vi) =


2; if f(vi) + f(ui) = 2,
1; if f(vi) + f(ui) = 1,
0; otherwise.

Note that f(vi) + f(ui) ≤ 2, for every i = 1, 2, ..., n. Then g is a PID-function of G, since
NG(vi) = NM(G)(ui)

⋂
V (G).

Case 2:
∑n

i=1 f(ui) = 2.

In this case, either there exists one vertex ui with f(ui) = 2 or there exist two vertices ui and
uj with f(ui) = f(uj) = 1.

Subcase(a): There exists one vertex ui with f(ui) = 2.

Without loss of generality let f(u1) = 2 and f(ui) = 0, for all i = 2, 3, ..., n. If possible as-
sume that there exists a vi ∈ N(u1) such that f(vi) = 0. But, we have f(ui) = 0 which implies
that

∑
f(N(ui)) = 2 and hence,

∑
f(N(vi)) =

∑
f(N(ui))+f(u1)−f(w) = 2. This implies,

f(w) = 2. Therefore,
∑

x∈N(ui)−{w} f(x) = 0, for all i = 2, 3, ..., n. This implies f(x) = 0
for x ∈ N(vi), for all i = 2, 3, ..., n. But, then v′is are perfect Italian dominated by ui. This
means v1 is a universal vertex of G and also f(M(G)) ≥ 4. But, g(v1) = g(u1) = g(w) = 1
is a PID-function of M(G) with weight 3, which is a contradiction to the fact that f is a γpI -
function of M(G). Therefore, none of the vertices in V (G) is perfect Italian dominated by u1.
Therefore, f restricted to G is a PID-function of G and f(G) ≤ f(M(G)) − 2. Therefore,
γpI (G) ≤ γpI (M(G)) − 2 so that, γpI (M(G)) ≥ γpI (G) + 2, which is a contradiction to the fact
that γpI (M(G)) ≤ γpI (G) + 1. Therefore, such a case dose not exist.

Subcase(b): There exist two vertices ui and uj with f(ui) = f(uj) = 1.

Without loss of generality, let f(u1) = f(u2) = 1 and f(ui) = 0, for all i = 3, 4, ..., n. As in
the above case, there dose not exist vi ∈ N(u1)

⋃
N(u2), i 6= 1, 2 such that f(vi) = 0. If v1, v2 /∈

N(u1)
⋃
N(u2), then again f/G is a PID-function of G and hence γpI (G) ≤ γpI (M(G)) − 2,

which is not possible. Therefore, assume that v1, v2 ∈ N(u1)
⋃
N(u2). i.e., v1 ∈ N(u2) and

v2 ∈ N(u1). If f(v1) = f(v2) = 0 then define g : V (G)→ {0, 1, 2} as follows.

g(vi) =


f(vi); i 6= 1, 2,
1; i = 1,
0; i = 2.

If f(v1) = 0 and f(v2) 6= 0 then define g : V (G)→ {0, 1, 2} as follows.

g(vi) =

{
f(vi); i 6= 2,
f(v2) + 1; i = 2.

The case f(v1) 6= 0 and f(v2) = 0 can be delt similarly. If both f(v1) and f(v2) are non-zero
then f/G is a PID-function, which again leads to a contradiction. In all the cases γpI (G) ≤
γpI (M(G))− 1. Therefore, γpI (M(G)) = γpI (G) + 1.
By Observation 7, we know that γpI (G) = 2γp(G). Therefore, γpI (M(G)) = 2γp(G) + 1.

Corollary 5.3. For any graph G with a universal vertex, γpI (M(G))) = 3.

6 Conclusion and Open Problems

In this paper, we have already given some examples of graphs which satisfy γpI (G) = 2γp(G).
Let G be a graph with n vertices and let = = {Hi : i = 1, 2, ..., n} be a family of n graphs
(not necessarily non-isomorphic). We define the corona of G with =, G � = as the graph with
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vertex set V (G) ∪ V (Hi), i = 1, 2, ..., n and edge set E(G) ∪E(Hi) ∪ {viu : u ∈ V (Hi), for all
i = 1, 2, ..., n}. When Hi = H , for all i, G�= reduces to the usual corona of G and H , G�H .
G�= satisfies, γpI (G�=) = 2γp(G�=), if |V (Hi)| > 1 for all i = 1, 2, ...n. Any supergraph of
the above graph obtained by adding edges between H ′is, to some extend, also satisfy the above
equality.

Figure 4. Structure of G�=.

Though we have infinitely many graphs which satisfy this equality, the charecterization prob-
lem is still open.

Problem 1: Characterize graphs for which γpI (G) = 2γp(G).

In Theorem 5.2 we have proved that, ifG has a γpI -function such that V1 = φ, then γpI (M(G)) =
γpI (G) + 1 = 2γp(G) + 1. Let G be the graph P3 � K1. Here, γp(G) = 3, γpI (G) = 4 and
γpI (M(G)) = 7 = 2γp(G) + 1. But there dose not exist a γpI -function of G in which V1 = φ.
Therefore, the converse of the theorem is not true for the equality γpI (M(G)) = 2γp(G)+1. But
we strongly belive that the converse of the Theorem 5.2 is true for γpI (M(G)) = γpI (G) + 1. So
we have the following open problems.

Problem 2: Characterize graphs for which γpI (M(G)) = 2γp(G) + 1.

Problem 3: Prove the converse of Theorem 5.2 for the equality γpI (M(G)) = γpI (G) + 1. ie; if
γpI (M(G)) = γpI (G) + 1, then there exists a γpI -function of G for which V1 = φ.

We know that, if there exists a γpI -function of G such that V1 = φ then γpI (G) = 2γp(G).
Therefore, if we can prove Problem 3 and if Class A and Class B are the classes of graphs which
satisfies Problem 1 and 2 respectively, then the intersection of Class A and Class B is precisely
the collection of graphs for which there exists a γpI -function such that V1 = φ.
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Abstract

Photocatalytic colour enhancement of Methylene Blue (MB) and Rhodamine B (RhB) dye is achieved by dual

band gap Titania Tenorite (TiO /CuO) nanocomposite system prepared by a cost effective co-precipitation

method. The UV–Visible and XPS analyses reveal that the existence of dual band gap is due to the coupling

of the constituent metal oxides in the nanocomposite. The band gap of TiO  in the nanocomposite is tuned

to the visible region, by changing the CuO content. Owing to the band gap tuning capability, the

nanocomposite can be used from the UV to Visible region for the colour enhancement. The crystalline

structure, morphology, molecular structure and chemical bonding of the samples are analyzed by XRD, FTIR

and TEM. The PL spectrum shows a reduction in intensity with increase in CuO content. Methylene Blue and

Rhodamine B dyes used to check the photocatalytic activity of TiO /CuO nanocomposite reveals that the

dye-metal oxide nanocomposite forms an amazing combination providing a colour enhancement of dye in

the presence of light due to the conversion of the dye from its colourless Leuco form to MB or RhB. The

mechanism of colour enhancement is well justified by UV–Vis absorption spectra.
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Introduction

Nanotechnology plays a vital role in scientific research and it makes influence to almost all sectors of life.

This emerging science leads to the development of the society by improving the living standard. A

nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of

less than 100 nanometres (nm). It can also be structures having nano-scale repeat distances between the

different phases that make up the material [1]. The combination of two materials in a nanocomposite helps

to rectify the shortcomings of the individual materials. As a result, the comprehensive properties of the

nanocomposite differ markedly from that of the component material.

These special features of nanocomposites make them useful in photocatalytic applications which include

the degradation studies of dyes, antibiotics etc. [[2], [3], [4], [5]].

Titanium Dioxide (Titania-TiO ) is an eco-friendly material which has many applications ranging from

photocatalysis to cosmetics. The three highly crystalline forms anatase, rutile and brookite-TiO  are widely

used among the different polymorphic forms of TiO  [6]. But its main drawback is that it responds to light in

the UV region. Ultraviolet radiation is only 5% of the solar spectrum at ground level [7]. So it will be of great

importance if we could tune the response of TiO  to the visible region which occupies 44% of the solar

spectrum by making use of other environment friendly metal oxides. This can be achieved by coupling TiO

with other metal oxides like oxides of Zinc, Copper, Iron, Tungsten etc [[8], [9], [10], [11]].

Earlier, TiO  has been coupled with Cupric Oxide (CuO-Tenorite) by different methods such as hydrothermal

method, electro spinning etc. to produce film, powder and fibre. Zhang and Tang reported the synthesis of

graded band gap films by varying the composition of CuO/TiO  [9]. Manjunath et al. synthesized

heterojunction CuO-TiO  nanocomposite by hydrothermal method for photocatalytic hydrogen generation

[12]. J.Chen et al. prepared CuO/TiO  hierarchical nanostructure for glucose detection [13]. Li et al. varied

CuO concentration and produced CuO/TiO  hybrid nanofibres [14]. The synthesis of the nanocomposites in

powder form by simple cost effective co-precipitation method is rarely reported. Lee and co-authors used

co-precipitation method to synthesize TiO /CuO by varying CuO loadings for the photocatalytic removal of

dichlorophenoxyacetic acid herbicide. But they reported that the low loading amount causes no change in

the structure and optical property of TiO  [15].

TiO  and its composites have been used for the photocatalytic degradation of many textile dyes. Dyes used

in textile industries are the major cause of water pollution as the dye wastes from the industries dissolve in

water. Photocatalytic degradation results in the degradation of toxic dyes into non-toxic compounds thereby

reducing water pollution. Houas et al. reported photocatalytic degradation pathway of Methylene Blue (MB)

in water [16]. Sandoval and co-workers used Titanate nanotubes for removal of MB [17]. Ajmal et al. has

2

2

2

2

2

2

2

2

2

2

2

2

2

58

https://ars.els-cdn.com/content/image/1-s2.0-S1293255818311889-fx1_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1293255818311889-fx1.jpg


6/22/23, 3:44 PM Photocatalytic colour enhancement of Methylene Blue and Rhodamine B dyes by coupled Titania Tenorite nanocomposites - …

https://www.sciencedirect.com/science/article/abs/pii/S1293255818311889 3/6

done the Photocatalytic degradation of textile dyes on Cu O-CuO/TiO  anatase powders [18]. Synthesis of

ZnO/CuO and TiO /CuO nanocomposites for the degradation of textile dyes was studied by Muzakki et al.

[19]. In addition to the photocatalytic degradation, TiO  was also used for photocatalytic colour switching.

Wang et al. reports the photocatalytic reversible colour switching of MB and RhB using TiO  nanocrystals

[20]. Photocatalytic colour switching of redox dyes with TiO  has been achieved by Wang and his co-

workers [21].

Although the photocatalytic degradation and colour switching of dyes using TiO  have been reported earlier,

there are no reports on the photocatalytic colour enhancement of dyes. This work presents the

photocatalytic colour enhancement of MB and RhB by TiO /CuO nanocomposites. Here, using a simple cost

effective co-precipitation method anatase TiO  is coupled with Cupric Oxide (Tenorite-CuO). TiO /CuO

nanocomposites are synthesized by varying the concentration of Copper nitrate solution. The combination

of wide band gap TiO  and narrow band gap CuO has resulted in tuneable dual band gaps with significantly

improved optical properties. The photocatalytic colour enhancement of MB and RhB by the TiO /CuO

nanocomposites makes them suitable as a colour additive with these dyes.

Section snippets

Synthesis and characterization of TiO /CuO nanocomposites

Titanium (IV) oxide and Copper (II) nitrate tri-hydrate purchased from Sigma Aldrich, Sodium hydroxide

pellets (Merck India Ltd) and double distilled water are used as the starting materials for the synthesis of

TiO /CuO nanocomposites. Methylene Blue and Rhodamine B dyes purchased from Merck India Ltd. is used

for the photocatalytic enhancement study. All reagents are of AR grade. TiO /CuO nanocomposites are

prepared by a slightly modified co-precipitation method reported by T.H. Nguyen et al. …

Structural analysis: X-Ray Diffraction analysis

Fig. 1 shows the X-ray Diffraction pattern of the prepared TiO /CuO nanocomposites. The peaks

corresponding to both TiO  and CuO are present in the spectra which is an obvious indication of the

formation of nanocomposites. In Fig. 1 the planes oriented at (1 0 1), (1 0 3), (0 0 4), (2 0 0), (1 0 5), (2 1 1),

(2 0 4), (1 1 6), (2 2 0), (2 1 5) and (2 2 4) are found to be matching with JCPDS card #841286 for TiO

anatase tetragonal structure with lattice constants a = 3.782 and b = 9.502 which is …

Conclusion

The Titania Tenorite (TiO /CuO) nanocomposites have been successfully synthesized through cost effective

co-precipitation method. The formation of the nanocomposite is confirmed by XRD, FTIR and TEM analyses.

The shift in binding energy obtained from the XPS analysis manifests the formation of Ti O Cu bond in

the nanocomposite due to the coupling of TiO  and CuO. The nanocomposites exhibit dual band gap which

correspond to CuO and TiO  respectively. The band gap energy of TiO  is tuned from the…
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