B.Sc. MATHEMATICS MODEL I

PROGRAMME OUTCOMES

PO1	Apply domain based knowledge to real life situations.
PO2	Acquire strong communication skills to function effectively in a diverse social atmosphere.
PO3	Adopt environmental values to enable sustainable living in the world.

UNDER GRADUATE PROGRAMME SPECIFIC OUTCOMES

	After the completion of the programme, the students will be able to:
PSO1	Utilize the mathematical tools to face the modern challenges in Mathematics.
PSO2	Acquire analytic and problem solving skills for careers and graduate works.
PSO3	Provide a holistic and logical framework in specific areas of Mathematics.

S1		Course Outcomes
No	Name of the Paper	After the completion of the course, the students will be
110.		able:
	SEMESTER I Core Course: MM1CRT01 Foundations of Mathematics	CO1 : To explain the concepts of mathematical logic
		methods.
1		CO2 : To illustrate the idea of sets, functions and
1		relations
		CO3 : To solve polynomial equations using numerical
		methods.
	SEMESTED II	CO1 : To interpret the ideas of conic sections, tangents
	Core Course: MM2CRT02 Analytic Geometry , Trigonometry and Differential Calculus	and normal to a conic and their properties.
2		CO2 : To apply the concepts of trigonometric functions,
2		their properties and summation of trigonometric series.
		CO3 : To solve problems involving successive
		differentiation and indeterminate forms.
3	SEMESTER III Core Course: MM3CRT03 Calculus	CO1 : To determine series expansions of given functions
		and, curvature and related parameters of given curve.
		CO2 : To calculate the partial derivatives, maxima and
		minima of functions and Lagrange multipliers for
		extremum problems.
		CO3 : To solve the area and volume problems using
		multiple integrals.

B.SC. COURSE OUTCOMES

		CO1 : To examine the applications of vector valued
4	SEMESTER IV	functions and vector integration.
	Core Course: MM4CRT04	CO2 : To apply the concept of congruence, Fermat's
	Vector Calculus, Theory of	theorem, Wilson's theorem and Euler's phi function.
	Numbers and Laplace transform	CO3 : To determine the Laplace transform of a given
	-	function.
		CO1 : To use the ideas of finite and infinite sets and the
	SEMESTER V	properties of set of real numbers.
5	Core Course: MM5CRT05 Mathematical Analysis	CO2 : To detect the convergence and divergence of
		sequence and series.
		CO3 : To apply the concept of limit of functions.
		CO1 : To explain the concepts of nature of solutions of
		differential equations, exact equations and homogeneous
		equations
	SEMESTER V	CO2 : To determine the solutions of second order linear
6	Core Course: MM5CR106	differential equations and first order partial differential
	Differential Equations	equations using different methods.
		CO3 : To compute the solutions of second order linear
		differential equations using the power series method.
		CO1 : To demonstrate different group structures and the
		basic results related to them.
	SEMESTER V	CO2 : To analyse the concepts of homomorphism of
7	Core Course: MM5CRT07	groups and factor groups using theorems and examples.
	Abstract Algebra	CO3 : To explain the concepts of ideals and factor rings
		from the concepts of normal subgroups and factor
		groups.
		CO1 : To explain different kinds of environmental
	Core Course: MM5CRT08 Human Right and Mathematics for Environmental Studies	pollution and its causes.
8		CO2: To apply knowledge about Fibonacci numbers and
		Golden ratio.
		CO3: To describe various rules protecting human rights.
		CO1 : To apply shortcut methods for solving problems.
	SEMESTER V Open Course: MM5OPT02 Applicable Mathematics	and improve mathematical skills
Q		CO2 : To describe the definitions of trigonometric ratios.
)		CO3 : To acquire the basic arithmetic skills involving
		percentage, average, time and distance and elementary
		algebra.
		CO1: To explain the meaning of continuity ,discontinuity
	SEMESTER VI	and derivative of a function.
10	Core Course: MM6CRT09 Real Analysis	CO2: To acquire the idea about Riemann integrability
		and Riemann integration.
		CO3 : To explain uniform convergence of a series.
	SEMESTER VI	CO1 : To explain basic concepts of graphs, directed
	Core Course: MM6CRT10 Graph Theory and Metric Spaces	graphs ,weighted graphs, trees, spanning trees, cut
11		vertices and connectivity.
		CO2 : To examine Eulerian and Hamiltonian graphs.
		CO3 : To explain the basic concepts of metric spaces-

		open sets, closed sets and Cantor set, convergence,
		completeness and continuous mapping in metric spaces.
		CO1 : To explain the concepts of limit, continuity of
12	SEMESTER VI	complex functions and analytic functions.
	Core Course: MM6CRT11	CO2 : To apply the concept of complex integration and
	Complex Analysis	the convergence of complex sequence and series.
		CO3 : To detect singular points and residues.
		CO1 : To illustrate the properties of matrices in solving
		system of linear equations.
10	SEMESTER VI Core Course: MM6CRT12	CO2 : To illustrate the concepts of vector spaces and
13		basic results related to them.
	Linear Algebra	CO3 : To discuss linear transformation and related
		concepts using matrices.
		CO1 : To apply linear programming problem solving
	SEMESTER VI	methods and the concept of duality in real world
14	Choice Based Course: MM6CBT01	problems.
	Operations Research	CO2 : To solve transportation and assignment problems.
	-	CO3 : To describe the concept of Game theory.
		CO1 : To demonstrate their own work.
		CO2 : To produce a mature oral presentation of a
15	SEMESTER VI	non-trivial mathematical topic.
	MM6PRT01: Project	CO3 : To investigate their awareness in relation to the
		wider research field.
	SEMESTER I	CO1 : To discuss the concept of partial derivatives.
	Complementary Course:	CO2 : To practice questions to find the rank of a matrix
	MM1CMT01	using elementary transformations and solve linear
16	Partial Differentiation, Matrices,	equations.
	Trigonometry and Numerical	CO3 : To compute summation of infinite series,
	Methods.	solutions of algebraic and transcendental equations.
		CO1 : To apply definite integrals to find volumes, length
	SEMESTER II	of plane curves and area of surfaces of revolution.
	Complementary Course:	CO2 : To use multiple integrals to find volume of a solid
17	MM2CM102	and area of bounded regions.
	Equations	CO3 : To solve first order differential equations and
	Equations	partial differential equations.
		CO1 : To solve problems involving vector valued
	SEMESTER III	functions, green's theorem, stokes theorem to integrate in
	Complementary Course:	vector fields.
18	MM3CMT03	CO2 : To illustrate the idea about conic sections, polar
	Vector Calculus, Analytic	coordinates and conics in polar coordinates.
	Geometry and Abstract Algebra	CO3: To use the concepts of groups, cyclic groups and
		homomorphism of groups.
	SEMESTER IV	CO1 : To discuss periodic functions, trigonometric series
	Complementary Course:	Fourier series and power series method.
19	MM4CMT04	CO2 : To explain Laplace transforms.
	Fourier Series, Laplace Transform	CO3 : To discuss the concepts of complex numbers and
	and Complex Analysis	analytic functions.

STATISTICS

1	SEMESTER I Complementary Course: Descriptive Statistics	CO1: To understand the basic knowledge on data collectionCO2: To discuss the different data summarizing tools.CO3: To discuss different types of index numbers and the property satisfied by the good index number.
2	SEMESTER II Complementary Course: Probability Theory	 CO1: To explain the concept of random variable and the probability distributions. CO2: To analyse the inter relation between two or more phenomena with the help of curve fitting, correlation –regression analysis. CO3: To develop critical thinking in theory of probability and its applications in real life problems.
3	SEMESTER III Complementary Course: Distribution Theory	 CO1: To make a bridge between the elementary statistical tool and probability theory. CO2: To understand the standard statistical distribution found in statistical practice and its properties. CO3: To develop the knowledge on exact sampling distribution which are essential for statistical inference.
4	SEMESTER IV Complementary Course: Statistical Inference	CO1: To understand the notation of point and interval estimation of the parametric models and their desirable properties. CO2: To understand the problems those are faced in testing a hypothesis with reference to the errors in decision making. CO3: To apply the different testing tools like Z-test, t-test, F-test, χ^2 distribution etc. to analyse the relevant real life problems.

M.Sc. MATHEMATICS

POST GRADUATE PROGRAMME SPECIFIC OUTCOMES

	After the completion of the programme, the students will be able to:	
PSO1	Evaluate hypothesis, theories, methods and evidence within their proper contexts.	
	Use the concepts and theories of mathematics and their application in the real world to an	
PSO2	advanced level in a systematic manner.	
	Prepare for research studies in Mathematics & related fields and enhance career prospects	
PSO3	in a huge array of fields.	

M.Sc. Course Outcomes

		Course Outcomes
Sl. No	Name of the Paper	
		After the completion of the course, the students will be able:
		CO1 : To analyze fundamental homomorphism theorem
		and group action on a set.
	SEMESTER I	CO2 : To apply isomorphism theorems and Sylow
1	ME010101: Abstract Algebra	theorems.
	WILDTOTOT. AUStract Augebra	CO3 : To demonstrate the knowledge of factorization of
		polynomials over a field, ring homomorphism, quotient
		rings, prime and maximal ideals.
		CO1 : To illustrate basic concepts of vector spaces and the
		properties of determinant function.
		CO2 : To differentiate different linear transformations,
2	SEMESTER I ME010102: Linear Algebra	their algebra and representation of transformations by
		matrices.
		CO3 : To implement the ideas of canonical forms,
		characteristic values and annihilating polynomials.
	SEMESTER I ME010103: Basic Topology	CO1 : To analyse the concept of topological spaces, base
		and subbase.
3		CO2 : To apply the concept of continuity, quotient spaces
		and connectedness on different topologies.
		CO3 : To differentiate levels of spaces based on axioms.
		CO1 : To explain theorems associated with bounded
	SEMESTER I ME010104: Real Analysis	variation and rectifiable curves.
4		CO2 : To acquire the idea about Riemann-Stielties integral
		and the concept of uniform convergence.
		CO3 : To acquire the idea about special functions.
		CO1 : To discuss about basic concepts of graph theory
	SEMESTER I ME010105: Graph Theory	CO2 : To use the application of trees in everyday
5		problems.
		CO3 : To practice problems on Eulerian and Hamiltonian
		graphs, graph coloring and planarity of graph.

6	SEMESTER II ME010201: Advanced Abstract Algebra	CO1 : To explain the properties of finite fields.CO2 : To apply the concepts of UFD, ED and field automorphismsCO3 : To describe Galois group and Galois theory.
7	SEMESTER II ME010202: Advanced Topology	 CO1 : To explain Urysohn characterization of normality, Tietze characterization of normality, products and co-products. CO2 : To analyse embedding lemma, Tychonoff embedding and metrization theorem. CO3 : To develop the idea of convergence of nets, compactness and variations of compactness.
8	SEMESTER II ME010203: Numerical analysis with Python 3	 CO1 : To develop basic python programming involving symbolic mathematical operations. CO2 : To interpret the concepts of Gaussian elimination, interpolation, curve fitting and finding roots of equations using python programme. CO3 : To illustrate the concept of numerical integration using python.
9	SEMESTER II ME010204: Complex Analysis	 CO1 : To explain spherical representation of complex plane and elementary properties of analytic functions. CO2 : To analyse power series representation of analytic functions. CO3 : To examine the concept of singularities and residues.
10	SEMESTER II ME010205: Measure Theory and Integration	 CO1 : To use knowledge about Lebesgue measure and Lebesgue measurable functions. CO2:To describe general measurable space and measurable functions. CO3: To apply integration over general measurable space and product measure
11	SEMESTER III ME010301: Advanced Complex Analysis	 CO1 : To apply the concept of harmonic and subharmonic functions. CO2 : To explain Weierstrass's theorem, Gamma function, Hadamard's theorem, Riemann zeta function and normal families. CO3 :To illustrate Riemann mapping theorem and Weierstrass's theory.
12	SEMESTER III ME010302: Partial Differential Equations	 CO1 : To explain PDEs of first order, second and higher orders. CO2 : To apply various analytic methods for computing solutions of various PDEs. CO3 : To determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. CO4 : To analyse behavior of solutions of PDEs using technique of separation of variables.

13	SEMESTER III ME010303: Multivariate Calculus and Integral Transforms	 CO1 : To acquire the concepts of integral transforms convolutions and multivariable differential calculus CO2 : To discuss implicit functions and extremum problems. CO3 : To explain integration of differential forms.
14	SEMESTER III ME010304: Functional Analysis	 CO1 : To acquire the concepts of normed spaces, properties of normed space,linear operators on finite dimensional spaces and dual space. CO2 : To illustrate inner product spaces and properties of orthonormal sequences using examples and theorems. CO3 : To demonstrate different forms of Hahn-Banach Theorems.
15	SEMESTER III ME010305: Optimization Techniques	 CO1 : To determine solutions to linear programming problems and integer programming problems using different methods. CO2 : To analyse the concepts of flow and potential in networks and goal programming. CO3 : To discuss different methods for solving non-linear programming problems.
16	SEMESTER IV ME010401: Spectral Theory	 CO1 : To distinguish different forms of convergence of operators and open mapping theorem. CO2 : To apply the concept of Banach fixed point theorem and properties of resolvent and spectrum. CO3 : To discuss properties of compact linear operators, bounded self adjoint linear operators, positive operators and properties of projections.
17	SEMESTER IV ME010402: Analytic Number Theory	 CO1 : To apply the properties of arithmetical functions for solving problems. CO2 : To acquire the knowledge about the theory of prime numbers. CO3 : To utilize the concepts of congruences, Chinese remainder theorem and Legendre symbol. CO4 : To implement Euler's theorem, Wilson's theorem and Mobius inversion formula.
18	SEMESTER IV ME800401 (Elective): Differential Geometry	 CO1 : To interpret the ideas of graphs and level sets, vector fields, the tangent space and vector fields on surfaces and orientation. CO2 : To summarize the fundamentals of Gauss map, geodesics and parallel transport. CO3 : To describe the ideas of Weingarten map, curvature of plane curves and line integrals, curvature of surfaces and parametrized surfaces.
19	SEMESTER IV ME800402 (Elective): Algorithmic Graph Theory	 CO1 : To implement basic concepts of graphs using algorithms. CO2 : To establish the max-flow min-cut algorithm and Menger's theorem for finding connectivity. CO3 : To examine algorithms for finding maximum

		matching in bipartite graphs, factorizations and block
		designs.
20	SEMESTER IV ME800403 (Elective): Combinatorics	 CO1: To apply the concepts of permutation, combinations problems, pigeonhole principle and Ramsey numbers. CO2: To use principles of inclusion and exclusion for solving problems. CO3: To compute generating functions and recurrence relations
21	SEMESTER IV ME010403 & ME010104: Dissertation and Viva-voce	CO1 : To deduce their arguments in a comprehensible and
		scholarly manner.
		CO2 : To develop the spirit of research in their mind.
		CO3 : To validate scientific integrity.